thepeg is hosted by Hepforge, IPPP Durham
ThePEG  2.1.4
ThePEG::ParticleID Namespace Reference

The ParticleID namespace defines the ParticleCodes enumeration. More...

Enumerations

enum  ParticleCodes {
  d = 1, dbar = -1, u = 2, ubar = -2,
  s = 3, sbar = -3, c = 4, cbar = -4,
  b = 5, bbar = -5, t = 6, tbar = -6,
  bprime = 7, bprimebar = -7, tprime = 8, tprimebar = -8,
  eminus = 11, eplus = -11, nu_e = 12, nu_ebar = -12,
  muminus = 13, muplus = -13, nu_mu = 14, nu_mubar = -14,
  tauminus = 15, tauplus = -15, nu_tau = 16, nu_taubar = -16,
  tauprimeminus = 17, tauprimeplus = -17, nuprime_tau = 18, nuprime_taubar = -18,
  g = 21, gamma = 22, Z0 = 23, Wplus = 24,
  Wminus = -24, h0 = 25, Zprime0 = 32, Zbis0 = 33,
  Wprimeplus = 34, Wprimeminus = -34, H0 = 35, A0 = 36,
  Hplus = 37, Hminus = -37, Graviton = 39, R0 = 41,
  Rbar0 = -41, LQ_ue = 42, LQ_uebar = -42, reggeon = 110,
  pi0 = 111, rho0 = 113, a_20 = 115, K_L0 = 130,
  piplus = 211, piminus = -211, rhoplus = 213, rhominus = -213,
  a_2plus = 215, a_2minus = -215, eta = 221, omega = 223,
  f_2 = 225, K_S0 = 310, K0 = 311, Kbar0 = -311,
  Kstar0 = 313, Kstarbar0 = -313, Kstar_20 = 315, Kstar_2bar0 = -315,
  Kplus = 321, Kminus = -321, Kstarplus = 323, Kstarminus = -323,
  Kstar_2plus = 325, Kstar_2minus = -325, etaprime = 331, phi = 333,
  fprime_2 = 335, Dplus = 411, Dminus = -411, Dstarplus = 413,
  Dstarminus = -413, Dstar_2plus = 415, Dstar_2minus = -415, D0 = 421,
  Dbar0 = -421, Dstar0 = 423, Dstarbar0 = -423, Dstar_20 = 425,
  Dstar_2bar0 = -425, D_splus = 431, D_sminus = -431, Dstar_splus = 433,
  Dstar_sminus = -433, Dstar_2splus = 435, Dstar_2sminus = -435, eta_c = 441,
  Jpsi = 443, chi_2c = 445, B0 = 511, Bbar0 = -511,
  Bstar0 = 513, Bstarbar0 = -513, Bstar_20 = 515, Bstar_2bar0 = -515,
  Bplus = 521, Bminus = -521, Bstarplus = 523, Bstarminus = -523,
  Bstar_2plus = 525, Bstar_2minus = -525, B_s0 = 531, B_sbar0 = -531,
  Bstar_s0 = 533, Bstar_sbar0 = -533, Bstar_2s0 = 535, Bstar_2sbar0 = -535,
  B_cplus = 541, B_cminus = -541, Bstar_cplus = 543, Bstar_cminus = -543,
  Bstar_2cplus = 545, Bstar_2cminus = -545, eta_b = 551, Upsilon = 553,
  chi_2b = 555, pomeron = 990, dd_1 = 1103, dd_1bar = -1103,
  Deltaminus = 1114, Deltabarplus = -1114, ud_0 = 2101, ud_0bar = -2101,
  ud_1 = 2103, ud_1bar = -2103, n0 = 2112, nbar0 = -2112,
  Delta0 = 2114, Deltabar0 = -2114, uu_1 = 2203, uu_1bar = -2203,
  pplus = 2212, pbarminus = -2212, Deltaplus = 2214, Deltabarminus = -2214,
  Deltaplus2 = 2224, Deltabarminus2 = -2224, sd_0 = 3101, sd_0bar = -3101,
  sd_1 = 3103, sd_1bar = -3103, Sigmaminus = 3112, Sigmabarplus = -3112,
  Sigmastarminus = 3114, Sigmastarbarplus = -3114, Lambda0 = 3122, Lambdabar0 = -3122,
  su_0 = 3201, su_0bar = -3201, su_1 = 3203, su_1bar = -3203,
  Sigma0 = 3212, Sigmabar0 = -3212, Sigmastar0 = 3214, Sigmastarbar0 = -3214,
  Sigmaplus = 3222, Sigmabarminus = -3222, Sigmastarplus = 3224, Sigmastarbarminus = -3224,
  ss_1 = 3303, ss_1bar = -3303, Ximinus = 3312, Xibarplus = -3312,
  Xistarminus = 3314, Xistarbarplus = -3314, Xi0 = 3322, Xibar0 = -3322,
  Xistar0 = 3324, Xistarbar0 = -3324, Omegaminus = 3334, Omegabarplus = -3334,
  cd_0 = 4101, cd_0bar = -4101, cd_1 = 4103, cd_1bar = -4103,
  Sigma_c0 = 4112, Sigma_cbar0 = -4112, Sigmastar_c0 = 4114, Sigmastar_cbar0 = -4114,
  Lambda_cplus = 4122, Lambda_cbarminus = -4122, Xi_c0 = 4132, Xi_cbar0 = -4132,
  cu_0 = 4201, cu_0bar = -4201, cu_1 = 4203, cu_1bar = -4203,
  Sigma_cplus = 4212, Sigma_cbarminus = -4212, Sigmastar_cplus = 4214, Sigmastar_cbarminus = -4214,
  Sigma_cplus2 = 4222, Sigma_cbarminus2 = -4222, Sigmastar_cplus2 = 4224, Sigmastar_cbarminus2 = -4224,
  Xi_cplus = 4232, Xi_cbarminus = -4232, cs_0 = 4301, cs_0bar = -4301,
  cs_1 = 4303, cs_1bar = -4303, Xiprime_c0 = 4312, Xiprime_cbar0 = -4312,
  Xistar_c0 = 4314, Xistar_cbar0 = -4314, Xiprime_cplus = 4322, Xiprime_cbarminus = -4322,
  Xistar_cplus = 4324, Xistar_cbarminus = -4324, Omega_c0 = 4332, Omega_cbar0 = -4332,
  Omegastar_c0 = 4334, Omegastar_cbar0 = -4334, cc_1 = 4403, cc_1bar = -4403,
  Xi_ccplus = 4412, Xi_ccbarminus = -4412, Xistar_ccplus = 4414, Xistar_ccbarminus = -4414,
  Xi_ccplus2 = 4422, Xi_ccbarminus2 = -4422, Xistar_ccplus2 = 4424, Xistar_ccbarminus2 = -4424,
  Omega_ccplus = 4432, Omega_ccbarminus = -4432, Omegastar_ccplus = 4434, Omegastar_ccbarminus = -4434,
  Omegastar_cccplus2 = 4444, Omegastar_cccbarminus = -4444, bd_0 = 5101, bd_0bar = -5101,
  bd_1 = 5103, bd_1bar = -5103, Sigma_bminus = 5112, Sigma_bbarplus = -5112,
  Sigmastar_bminus = 5114, Sigmastar_bbarplus = -5114, Lambda_b0 = 5122, Lambda_bbar0 = -5122,
  Xi_bminus = 5132, Xi_bbarplus = -5132, Xi_bc0 = 5142, Xi_bcbar0 = -5142,
  bu_0 = 5201, bu_0bar = -5201, bu_1 = 5203, bu_1bar = -5203,
  Sigma_b0 = 5212, Sigma_bbar0 = -5212, Sigmastar_b0 = 5214, Sigmastar_bbar0 = -5214,
  Sigma_bplus = 5222, Sigma_bbarminus = -5222, Sigmastar_bplus = 5224, Sigmastar_bbarminus = -5224,
  Xi_b0 = 5232, Xi_bbar0 = -5232, Xi_bcplus = 5242, Xi_bcbarminus = -5242,
  bs_0 = 5301, bs_0bar = -5301, bs_1 = 5303, bs_1bar = -5303,
  Xiprime_bminus = 5312, Xiprime_bbarplus = -5312, Xistar_bminus = 5314, Xistar_bbarplus = -5314,
  Xiprime_b0 = 5322, Xiprime_bbar0 = -5322, Xistar_b0 = 5324, Xistar_bbar0 = -5324,
  Omega_bminus = 5332, Omega_bbarplus = -5332, Omegastar_bminus = 5334, Omegastar_bbarplus = -5334,
  Omega_bc0 = 5342, Omega_bcbar0 = -5342, bc_0 = 5401, bc_0bar = -5401,
  bc_1 = 5403, bc_1bar = -5403, Xiprime_bc0 = 5412, Xiprime_bcbar0 = -5412,
  Xistar_bc0 = 5414, Xistar_bcbar0 = -5414, Xiprime_bcplus = 5422, Xiprime_bcbarminus = -5422,
  Xistar_bcplus = 5424, Xistar_bcbarminus = -5424, Omegaprime_bc0 = 5432, Omegaprime_bcba = -5432,
  Omegastar_bc0 = 5434, Omegastar_bcbar0 = -5434, Omega_bccplus = 5442, Omega_bccbarminus = -5442,
  Omegastar_bccplus = 5444, Omegastar_bccbarminus = -5444, bb_1 = 5503, bb_1bar = -5503,
  Xi_bbminus = 5512, Xi_bbbarplus = -5512, Xistar_bbminus = 5514, Xistar_bbbarplus = -5514,
  Xi_bb0 = 5522, Xi_bbbar0 = -5522, Xistar_bb0 = 5524, Xistar_bbbar0 = -5524,
  Omega_bbminus = 5532, Omega_bbbarplus = -5532, Omegastar_bbminus = 5534, Omegastar_bbbarplus = -5534,
  Omega_bbc0 = 5542, Omega_bbcbar0 = -5542, Omegastar_bbc0 = 5544, Omegastar_bbcbar0 = -5544,
  Omegastar_bbbminus = 5554, Omegastar_bbbbarplus = -5554, a_00 = 9000111, b_10 = 10113,
  a_0plus = 9000211, a_0minus = -9000211, b_1plus = 10213, b_1minus = -10213,
  f_0 = 9010221, h_1 = 10223, Kstar_00 = 10311, Kstar_0bar0 = -10311,
  K_10 = 10313, K_1bar0 = -10313, Kstar_0plus = 10321, Kstar_0minus = -10321,
  K_1plus = 10323, K_1minus = -10323, eta1440 = 100331, hprime_1 = 10333,
  Dstar_0plus = 10411, Dstar_0minus = -10411, D_1plus = 10413, D_1minus = -10413,
  Dstar_00 = 10421, Dstar_0bar0 = -10421, D_10 = 10423, D_1bar0 = -10423,
  Dstar_0splus = 10431, Dstar_0sminus = -10431, D_1splus = 10433, D_1sminus = -10433,
  chi_0c = 10441, h_1c = 10443, Bstar_00 = 10511, Bstar_0bar0 = -10511,
  B_10 = 10513, B_1bar0 = -10513, Bstar_0plus = 10521, Bstar_0minus = -10521,
  B_1plus = 10523, B_1minus = -10523, Bstar_0s0 = 10531, Bstar_0sbar0 = -10531,
  B_1s0 = 10533, B_1sbar0 = -10533, Bstar_0cplus = 10541, Bstar_0cminus = -10541,
  B_1cplus = 10543, B_1cminus = -10543, chi_0b = 10551, h_1b = 10553,
  a_10 = 20113, a_1plus = 20213, a_1minus = -20213, f_1 = 20223,
  Kstar_10 = 20313, Kstar_1bar0 = -20313, Kstar_1plus = 20323, Kstar_1minus = -20323,
  fprime_1 = 20333, Dstar_1plus = 20413, Dstar_1minus = -20413, Dstar_10 = 20423,
  Dstar_1bar0 = -20423, Dstar_1splus = 20433, Dstar_1sminus = -20433, chi_1c = 20443,
  Bstar_10 = 20513, Bstar_1bar0 = -20513, Bstar_1plus = 20523, Bstar_1minus = -20523,
  Bstar_1s0 = 20533, Bstar_1sbar0 = -20533, Bstar_1cplus = 20543, Bstar_1cminus = -20543,
  chi_1b = 20553, psiprime = 100443, Upsilonprime = 100553, SUSY_d_L = 1000001,
  SUSY_d_Lbar = -1000001, SUSY_u_L = 1000002, SUSY_u_Lbar = -1000002, SUSY_s_L = 1000003,
  SUSY_s_Lbar = -1000003, SUSY_c_L = 1000004, SUSY_c_Lbar = -1000004, SUSY_b_1 = 1000005,
  SUSY_b_1bar = -1000005, SUSY_t_1 = 1000006, SUSY_t_1bar = -1000006, SUSY_e_Lminus = 1000011,
  SUSY_e_Lplus = -1000011, SUSY_nu_eL = 1000012, SUSY_nu_eLbar = -1000012, SUSY_mu_Lminus = 1000013,
  SUSY_mu_Lplus = -1000013, SUSY_nu_muL = 1000014, SUSY_nu_muLbar = -1000014, SUSY_tau_1minus = 1000015,
  SUSY_tau_1plus = -1000015, SUSY_nu_tauL = 1000016, SUSY_nu_tauLbar = -1000016, SUSY_g = 1000021,
  SUSY_chi_10 = 1000022, SUSY_chi_20 = 1000023, SUSY_chi_1plus = 1000024, SUSY_chi_1minus = -1000024,
  SUSY_chi_30 = 1000025, SUSY_chi_40 = 1000035, SUSY_chi_2plus = 1000037, SUSY_chi_2minus = -1000037,
  SUSY_Gravitino = 1000039, SUSY_d_R = 2000001, SUSY_d_Rbar = -2000001, SUSY_u_R = 2000002,
  SUSY_u_Rbar = -2000002, SUSY_s_R = 2000003, SUSY_s_Rbar = -2000003, SUSY_c_R = 2000004,
  SUSY_c_Rbar = -2000004, SUSY_b_2 = 2000005, SUSY_b_2bar = -2000005, SUSY_t_2 = 2000006,
  SUSY_t_2bar = -2000006, SUSY_e_Rminus = 2000011, SUSY_e_Rplus = -2000011, SUSY_nu_eR = 2000012,
  SUSY_nu_eRbar = -2000012, SUSY_mu_Rminus = 2000013, SUSY_mu_Rplus = -2000013, SUSY_nu_muR = 2000014,
  SUSY_nu_muRbar = -2000014, SUSY_tau_2minus = 2000015, SUSY_tau_2plus = -2000015, SUSY_nu_tauR = 2000016,
  SUSY_nu_tauRbar = -2000016, pi_tc0 = 3000111, pi_tcplus = 3000211, pi_tcminus = -3000211,
  piprime_tc0 = 3000221, eta_tc0 = 3000331, rho_tc0 = 3000113, rho_tcplus = 3000213,
  rho_tcminus = -3000213, omega_tc = 3000223, V8_tc = 3100021, pi_22_1_tc = 3100111,
  pi_22_8_tc = 3200111, rho_11_tc = 3100113, rho_12_tc = 3200113, rho_21_tc = 3300113,
  rho_22_tc = 3400113, dstar = 4000001, dstarbar = -4000001, ustar = 4000002,
  ustarbar = -4000002, estarminus = 4000011, estarbarplus = -4000011, nustar_e0 = 4000012,
  nustar_ebar0 = -4000012, Gravitonstar = 5000039, nu_Re = 9900012, nu_Rmu = 9900014,
  nu_Rtau = 9900016, Z_R0 = 9900023, W_Rplus = 9900024, W_Rminus = -9900024,
  H_Lplus2 = 9900041, H_Lminus2 = -9900041, H_Rplus2 = 9900042, H_Rminus2 = -9900042,
  rho_diff0 = 9900110, pi_diffrplus = 9900210, pi_diffrminus = -9900210, omega_di = 9900220,
  phi_diff = 9900330, Jpsi_di = 9900440, n_diffr0 = 9902110, n_diffrbar0 = -9902110,
  p_diffrplus = 9902210, p_diffrbarminus = -9902210, undefined = 0
}
 Enumeration to give identifiers to PDG id numbers. More...
 

Detailed Description

The ParticleID namespace defines the ParticleCodes enumeration.

Enumeration Type Documentation

◆ ParticleCodes

Enumeration to give identifiers to PDG id numbers.

Enumerator

$\mbox{d}$ (d)

dbar 

$\overline{\mbox{d}}$ (dbar)

$\mbox{u}$ (u)

ubar 

$\overline{\mbox{u}}$ (ubar)

$\mbox{s}$ (s)

sbar 

$\overline{\mbox{s}}$ (sbar)

$\mbox{c}$ (c)

cbar 

$\overline{\mbox{c}}$ (cbar)

$\mbox{b}$ (b)

bbar 

$\overline{\mbox{b}}$ (bbar)

$\mbox{t}$ (t)

tbar 

$\overline{\mbox{t}}$ (tbar)

bprime 

$\mbox{b}^{\prime }$ (b')

bprimebar 

$\overline{\mbox{b}}^{\prime }$ (b'bar)

tprime 

$\mbox{t}^{\prime }$ (t')

tprimebar 

$\overline{\mbox{t}}^{\prime }$ (t'bar)

eminus 

$\mbox{e}^{-}$ (e-)

eplus 

$\mbox{e}^{+}$ (e+)

nu_e 

$\nu _{e}$ (nu_e)

nu_ebar 

$\overline{\nu }_{e}$ (nu_ebar)

muminus 

$\mu ^{-}$ (mu-)

muplus 

$\mu ^{+}$ (mu+)

nu_mu 

$\nu _{\mu }$ (nu_mu)

nu_mubar 

$\overline{\nu }_{\mu }$ (nu_mubar)

tauminus 

$\tau ^{-}$ (tau-)

tauplus 

$\tau ^{+}$ (tau+)

nu_tau 

$\nu _{\tau }$ (nu_tau)

nu_taubar 

$\overline{\nu }_{\tau }$ (nu_taubar)

tauprimeminus 

$\tau ^{\prime -}$ (tau'-)

tauprimeplus 

$\tau ^{\prime +}$ (tau'+)

nuprime_tau 

$\nu ^{\prime }_{\tau }$ (nu'_tau)

nuprime_taubar 

$\overline{\nu }^{\prime }_{\tau }$ (nu'_taubar)

$\mbox{g}$ (g)

gamma 

$\gamma $ (gamma)

Z0 

$\mbox{Z}^{0 }$ (Z0)

Wplus 

$\mbox{W}^{+}$ (W+)

Wminus 

$\mbox{W}^{-}$ (W-)

h0 

$\mbox{h}^{0 }$ (h0)

Zprime0 

$\mbox{Z}^{\prime 0 }$ (Z'0)

Zbis0 

$\mbox{Z}^{\prime\prime 0 }$ (Z"0)

Wprimeplus 

$\mbox{W}^{\prime +}$ (W'+)

Wprimeminus 

$\mbox{W}^{\prime -}$ (W'-)

H0 

$\mbox{H}^{0 }$ (H0)

A0 

$\mbox{A}^{0 }$ (A0)

Hplus 

$\mbox{H}^{+}$ (H+)

Hminus 

$\mbox{H}^{-}$ (H-)

Graviton 

${\cal G}$ (Graviton)

R0 

$\mbox{R}^{0 }$ (R0)

Rbar0 

$\overline{\mbox{R}}^{0 }$ (Rbar0)

LQ_ue 

$\mbox{L}_{Que}$ (LQ_ue)

LQ_uebar 

$\overline{\mbox{L}}_{Que}$ (LQ_uebar)

reggeon 

$I\!\!R$ (reggeon)

pi0 

$\pi ^{0 }$ (pi0)

rho0 

$\rho ^{0 }$ (rho0)

a_20 

$\mbox{a}^{0 }_{2}$ (a_20)

K_L0 

$\mbox{K}^{0 }_{L}$ (K_L0)

piplus 

$\pi ^{+}$ (pi+)

piminus 

$\pi ^{-}$ (pi-)

rhoplus 

$\rho ^{+}$ (rho+)

rhominus 

$\rho ^{-}$ (rho-)

a_2plus 

$\mbox{a}^{+}_{2}$ (a_2+)

a_2minus 

$\mbox{a}^{-}_{2}$ (a_2-)

eta 

$\eta $ (eta)

omega 

$\omega $ (omega)

f_2 

$\mbox{f}_{2}$ (f_2)

K_S0 

$\mbox{K}^{0 }_{S}$ (K_S0)

K0 

$\mbox{K}^{0 }$ (K0)

Kbar0 

$\overline{\mbox{K}}^{0 }$ (Kbar0)

Kstar0 

$\mbox{K}^{*0 }$ (K*0)

Kstarbar0 

$\overline{\mbox{K}}^{*0 }$ (K*bar0)

Kstar_20 

$\mbox{K}^{*0 }_{2}$ (K*_20)

Kstar_2bar0 

$\overline{\mbox{K}}^{*0 }_{2}$ (K*_2bar0)

Kplus 

$\mbox{K}^{+}$ (K+)

Kminus 

$\mbox{K}^{-}$ (K-)

Kstarplus 

$\mbox{K}^{*+}$ (K*+)

Kstarminus 

$\mbox{K}^{*-}$ (K*-)

Kstar_2plus 

$\mbox{K}^{*+}_{2}$ (K*_2+)

Kstar_2minus 

$\mbox{K}^{*-}_{2}$ (K*_2-)

etaprime 

$\eta ^{\prime }$ (eta')

phi 

$\phi $ (phi)

fprime_2 

$\mbox{f}^{\prime }_{2}$ (f'_2)

Dplus 

$\mbox{D}^{+}$ (D+)

Dminus 

$\mbox{D}^{-}$ (D-)

Dstarplus 

$\mbox{D}^{*+}$ (D*+)

Dstarminus 

$\mbox{D}^{*-}$ (D*-)

Dstar_2plus 

$\mbox{D}^{*+}_{2}$ (D*_2+)

Dstar_2minus 

$\mbox{D}^{*-}_{2}$ (D*_2-)

D0 

$\mbox{D}^{0 }$ (D0)

Dbar0 

$\overline{\mbox{D}}^{0 }$ (Dbar0)

Dstar0 

$\mbox{D}^{*0 }$ (D*0)

Dstarbar0 

$\overline{\mbox{D}}^{*0 }$ (D*bar0)

Dstar_20 

$\mbox{D}^{*0 }_{2}$ (D*_20)

Dstar_2bar0 

$\overline{\mbox{D}}^{*0 }_{2}$ (D*_2bar0)

D_splus 

$\mbox{D}^{+}_{s}$ (D_s+)

D_sminus 

$\mbox{D}^{-}_{s}$ (D_s-)

Dstar_splus 

$\mbox{D}^{*+}_{s}$ (D*_s+)

Dstar_sminus 

$\mbox{D}^{*-}_{s}$ (D*_s-)

Dstar_2splus 

$\mbox{D}^{*+}_{2s}$ (D*_2s+)

Dstar_2sminus 

$\mbox{D}^{*-}_{2s}$ (D*_2s-)

eta_c 

$\eta _{c}$ (eta_c)

Jpsi 

$J/\psi $ (J/psi)

chi_2c 

$\chi _{2c}$ (chi_2c)

B0 

$\mbox{B}^{0 }$ (B0)

Bbar0 

$\overline{\mbox{B}}^{0 }$ (Bbar0)

Bstar0 

$\mbox{B}^{*0 }$ (B*0)

Bstarbar0 

$\overline{\mbox{B}}^{*0 }$ (B*bar0)

Bstar_20 

$\mbox{B}^{*0 }_{2}$ (B*_20)

Bstar_2bar0 

$\overline{\mbox{B}}^{*0 }_{2}$ (B*_2bar0)

Bplus 

$\mbox{B}^{+}$ (B+)

Bminus 

$\mbox{B}^{-}$ (B-)

Bstarplus 

$\mbox{B}^{*+}$ (B*+)

Bstarminus 

$\mbox{B}^{*-}$ (B*-)

Bstar_2plus 

$\mbox{B}^{*+}_{2}$ (B*_2+)

Bstar_2minus 

$\mbox{B}^{*-}_{2}$ (B*_2-)

B_s0 

$\mbox{B}^{0 }_{s}$ (B_s0)

B_sbar0 

$\overline{\mbox{B}}^{0 }_{s}$ (B_sbar0)

Bstar_s0 

$\mbox{B}^{*0 }_{s}$ (B*_s0)

Bstar_sbar0 

$\overline{\mbox{B}}^{*0 }_{s}$ (B*_sbar0)

Bstar_2s0 

$\mbox{B}^{*0 }_{2s}$ (B*_2s0)

Bstar_2sbar0 

$\overline{\mbox{B}}^{*0 }_{2s}$ (B*_2sbar0)

B_cplus 

$\mbox{B}^{+}_{c}$ (B_c+)

B_cminus 

$\mbox{B}^{-}_{c}$ (B_c-)

Bstar_cplus 

$\mbox{B}^{*+}_{c}$ (B*_c+)

Bstar_cminus 

$\mbox{B}^{*-}_{c}$ (B*_c-)

Bstar_2cplus 

$\mbox{B}^{*+}_{2c}$ (B*_2c+)

Bstar_2cminus 

$\mbox{B}^{*-}_{2c}$ (B*_2c-)

eta_b 

$\eta _{b}$ (eta_b)

Upsilon 

$\Upsilon $ (Upsilon)

chi_2b 

$\chi _{2b}$ (chi_2b)

pomeron 

$I\!\!P$ (pomeron)

dd_1 

$\mbox{dd}_{1}$ (dd_1)

dd_1bar 

$\overline{\mbox{dd}}_{1}$ (dd_1bar)

Deltaminus 

$\Delta ^{-}$ (Delta-)

Deltabarplus 

$\overline{\Delta }^{+}$ (Deltabar+)

ud_0 

$\mbox{ud}^{0 }$ (ud_0)

ud_0bar 

$\overline{\mbox{ud}}^{0 }$ (ud_0bar)

ud_1 

$\mbox{ud}_{1}$ (ud_1)

ud_1bar 

$\overline{\mbox{ud}}_{1}$ (ud_1bar)

n0 

$\mbox{n}^{0 }$ (n0)

nbar0 

$\overline{\mbox{n}}^{0 }$ (nbar0)

Delta0 

$\Delta ^{0 }$ (Delta0)

Deltabar0 

$\overline{\Delta }^{0 }$ (Deltabar0)

uu_1 

$\mbox{uu}_{1}$ (uu_1)

uu_1bar 

$\overline{\mbox{uu}}_{1}$ (uu_1bar)

pplus 

$\mbox{p}^{+}$ (p+)

pbarminus 

$\overline{\mbox{p}}^{-}$ (pbar-)

Deltaplus 

$\Delta ^{+}$ (Delta+)

Deltabarminus 

$\overline{\Delta }^{-}$ (Deltabar-)

Deltaplus2 

$\Delta ^{++}$ (Delta++)

Deltabarminus2 

$\overline{\Delta }^{--}$ (Deltabar–)

sd_0 

$\mbox{sd}^{0 }$ (sd_0)

sd_0bar 

$\overline{\mbox{sd}}^{0 }$ (sd_0bar)

sd_1 

$\mbox{sd}_{1}$ (sd_1)

sd_1bar 

$\overline{\mbox{sd}}_{1}$ (sd_1bar)

Sigmaminus 

$\Sigma ^{-}$ (Sigma-)

Sigmabarplus 

$\overline{\Sigma }^{+}$ (Sigmabar+)

Sigmastarminus 

$\Sigma ^{*-}$ (Sigma*-)

Sigmastarbarplus 

$\overline{\Sigma }^{*+}$ (Sigma*bar+)

Lambda0 

$\Lambda ^{0 }$ (Lambda0)

Lambdabar0 

$\overline{\Lambda }^{0 }$ (Lambdabar0)

su_0 

$\mbox{su}^{0 }$ (su_0)

su_0bar 

$\overline{\mbox{su}}^{0 }$ (su_0bar)

su_1 

$\mbox{su}_{1}$ (su_1)

su_1bar 

$\overline{\mbox{su}}_{1}$ (su_1bar)

Sigma0 

$\Sigma ^{0 }$ (Sigma0)

Sigmabar0 

$\overline{\Sigma }^{0 }$ (Sigmabar0)

Sigmastar0 

$\Sigma ^{*0 }$ (Sigma*0)

Sigmastarbar0 

$\overline{\Sigma }^{*0 }$ (Sigma*bar0)

Sigmaplus 

$\Sigma ^{+}$ (Sigma+)

Sigmabarminus 

$\overline{\Sigma }^{-}$ (Sigmabar-)

Sigmastarplus 

$\Sigma ^{*+}$ (Sigma*+)

Sigmastarbarminus 

$\overline{\Sigma }^{*-}$ (Sigma*bar-)

ss_1 

$\mbox{ss}_{1}$ (ss_1)

ss_1bar 

$\overline{\mbox{ss}}_{1}$ (ss_1bar)

Ximinus 

$\Xi ^{-}$ (Xi-)

Xibarplus 

$\overline{\Xi }^{+}$ (Xibar+)

Xistarminus 

$\Xi ^{*-}$ (Xi*-)

Xistarbarplus 

$\overline{\Xi }^{*+}$ (Xi*bar+)

Xi0 

$\Xi ^{0 }$ (Xi0)

Xibar0 

$\overline{\Xi }^{0 }$ (Xibar0)

Xistar0 

$\Xi ^{*0 }$ (Xi*0)

Xistarbar0 

$\overline{\Xi }^{*0 }$ (Xi*bar0)

Omegaminus 

$\Omega ^{-}$ (Omega-)

Omegabarplus 

$\overline{\Omega }^{+}$ (Omegabar+)

cd_0 

$\mbox{cd}^{0 }$ (cd_0)

cd_0bar 

$\overline{\mbox{cd}}^{0 }$ (cd_0bar)

cd_1 

$\mbox{cd}_{1}$ (cd_1)

cd_1bar 

$\overline{\mbox{cd}}_{1}$ (cd_1bar)

Sigma_c0 

$\Sigma ^{0 }_{c}$ (Sigma_c0)

Sigma_cbar0 

$\overline{\Sigma }^{0 }_{c}$ (Sigma_cbar0)

Sigmastar_c0 

$\Sigma ^{*0 }_{c}$ (Sigma*_c0)

Sigmastar_cbar0 

$\overline{\Sigma }^{*0 }_{c}$ (Sigma*_cbar0)

Lambda_cplus 

$\Lambda ^{+}_{c}$ (Lambda_c+)

Lambda_cbarminus 

$\overline{\Lambda }^{-}_{c}$ (Lambda_cbar-)

Xi_c0 

$\Xi ^{0 }_{c}$ (Xi_c0)

Xi_cbar0 

$\overline{\Xi }^{0 }_{c}$ (Xi_cbar0)

cu_0 

$\mbox{cu}^{0 }$ (cu_0)

cu_0bar 

$\overline{\mbox{cu}}^{0 }$ (cu_0bar)

cu_1 

$\mbox{cu}_{1}$ (cu_1)

cu_1bar 

$\overline{\mbox{cu}}_{1}$ (cu_1bar)

Sigma_cplus 

$\Sigma ^{+}_{c}$ (Sigma_c+)

Sigma_cbarminus 

$\overline{\Sigma }^{-}_{c}$ (Sigma_cbar-)

Sigmastar_cplus 

$\Sigma ^{*+}_{c}$ (Sigma*_c+)

Sigmastar_cbarminus 

$\overline{\Sigma }^{*-}_{c}$ (Sigma*_cbar-)

Sigma_cplus2 

$\Sigma ^{++}_{c}$ (Sigma_c++)

Sigma_cbarminus2 

$\overline{\Sigma }^{--}_{c}$ (Sigma_cbar–)

Sigmastar_cplus2 

$\Sigma ^{*++}_{c}$ (Sigma*_c++)

Sigmastar_cbarminus2 

$\overline{\Sigma }^{*--}_{c}$ (Sigma*_cbar–)

Xi_cplus 

$\Xi ^{+}_{c}$ (Xi_c+)

Xi_cbarminus 

$\overline{\Xi }^{-}_{c}$ (Xi_cbar-)

cs_0 

$\mbox{cs}^{0 }$ (cs_0)

cs_0bar 

$\overline{\mbox{cs}}^{0 }$ (cs_0bar)

cs_1 

$\mbox{cs}_{1}$ (cs_1)

cs_1bar 

$\overline{\mbox{cs}}_{1}$ (cs_1bar)

Xiprime_c0 

$\Xi ^{\prime 0 }_{c}$ (Xi'_c0)

Xiprime_cbar0 

$\overline{\Xi }^{\prime 0 }_{c}$ (Xi'_cbar0)

Xistar_c0 

$\Xi ^{*0 }_{c}$ (Xi*_c0)

Xistar_cbar0 

$\overline{\Xi }^{*0 }_{c}$ (Xi*_cbar0)

Xiprime_cplus 

$\Xi ^{\prime +}_{c}$ (Xi'_c+)

Xiprime_cbarminus 

$\overline{\Xi }^{\prime -}_{c}$ (Xi'_cbar-)

Xistar_cplus 

$\Xi ^{*+}_{c}$ (Xi*_c+)

Xistar_cbarminus 

$\overline{\Xi }^{*-}_{c}$ (Xi*_cbar-)

Omega_c0 

$\Omega ^{0 }_{c}$ (Omega_c0)

Omega_cbar0 

$\overline{\Omega }^{0 }_{c}$ (Omega_cbar0)

Omegastar_c0 

$\Omega ^{*0 }_{c}$ (Omega*_c0)

Omegastar_cbar0 

$\overline{\Omega }^{*0 }_{c}$ (Omega*_cbar0)

cc_1 

$\mbox{cc}_{1}$ (cc_1)

cc_1bar 

$\overline{\mbox{cc}}_{1}$ (cc_1bar)

Xi_ccplus 

$\Xi ^{+}_{cc}$ (Xi_cc+)

Xi_ccbarminus 

$\overline{\Xi }^{-}_{cc}$ (Xi_ccbar-)

Xistar_ccplus 

$\Xi ^{*+}_{cc}$ (Xi*_cc+)

Xistar_ccbarminus 

$\overline{\Xi }^{*-}_{cc}$ (Xi*_ccbar-)

Xi_ccplus2 

$\Xi ^{++}_{cc}$ (Xi_cc++)

Xi_ccbarminus2 

$\overline{\Xi }^{--}_{cc}$ (Xi_ccbar–)

Xistar_ccplus2 

$\Xi ^{*++}_{cc}$ (Xi*_cc++)

Xistar_ccbarminus2 

$\overline{\Xi }^{*--}_{cc}$ (Xi*_ccbar–)

Omega_ccplus 

$\Omega ^{+}_{cc}$ (Omega_cc+)

Omega_ccbarminus 

$\overline{\Omega }^{-}_{cc}$ (Omega_ccbar-)

Omegastar_ccplus 

$\Omega ^{*+}_{cc}$ (Omega*_cc+)

Omegastar_ccbarminus 

$\overline{\Omega }^{*-}_{cc}$ (Omega*_ccbar-)

Omegastar_cccplus2 

$\Omega ^{*++}_{ccc}$ (Omega*_ccc++)

Omegastar_cccbarminus 

$\overline{\Omega }^{*-}_{ccc}$ (Omega*_cccbar-)

bd_0 

$\mbox{bd}^{0 }$ (bd_0)

bd_0bar 

$\overline{\mbox{bd}}^{0 }$ (bd_0bar)

bd_1 

$\mbox{bd}_{1}$ (bd_1)

bd_1bar 

$\overline{\mbox{bd}}_{1}$ (bd_1bar)

Sigma_bminus 

$\Sigma ^{-}_{b}$ (Sigma_b-)

Sigma_bbarplus 

$\overline{\Sigma }^{+}_{b}$ (Sigma_bbar+)

Sigmastar_bminus 

$\Sigma ^{*-}_{b}$ (Sigma*_b-)

Sigmastar_bbarplus 

$\overline{\Sigma }^{*+}_{b}$ (Sigma*_bbar+)

Lambda_b0 

$\Lambda ^{0 }_{b}$ (Lambda_b0)

Lambda_bbar0 

$\overline{\Lambda }^{0 }_{b}$ (Lambda_bbar0)

Xi_bminus 

$\Xi ^{-}_{b}$ (Xi_b-)

Xi_bbarplus 

$\overline{\Xi }^{+}_{b}$ (Xi_bbar+)

Xi_bc0 

$\Xi ^{0 }_{bc}$ (Xi_bc0)

Xi_bcbar0 

$\overline{\Xi }^{0 }_{bc}$ (Xi_bcbar0)

bu_0 

$\mbox{bu}^{0 }$ (bu_0)

bu_0bar 

$\overline{\mbox{bu}}^{0 }$ (bu_0bar)

bu_1 

$\mbox{bu}_{1}$ (bu_1)

bu_1bar 

$\overline{\mbox{bu}}_{1}$ (bu_1bar)

Sigma_b0 

$\Sigma ^{0 }_{b}$ (Sigma_b0)

Sigma_bbar0 

$\overline{\Sigma }^{0 }_{b}$ (Sigma_bbar0)

Sigmastar_b0 

$\Sigma ^{*0 }_{b}$ (Sigma*_b0)

Sigmastar_bbar0 

$\overline{\Sigma }^{*0 }_{b}$ (Sigma*_bbar0)

Sigma_bplus 

$\Sigma ^{+}_{b}$ (Sigma_b+)

Sigma_bbarminus 

$\overline{\Sigma }^{-}_{b}$ (Sigma_bbar-)

Sigmastar_bplus 

$\Sigma ^{*+}_{b}$ (Sigma*_b+)

Sigmastar_bbarminus 

$\overline{\Sigma }^{*-}_{b}$ (Sigma*_bbar-)

Xi_b0 

$\Xi ^{0 }_{b}$ (Xi_b0)

Xi_bbar0 

$\overline{\Xi }^{0 }_{b}$ (Xi_bbar0)

Xi_bcplus 

$\Xi ^{+}_{bc}$ (Xi_bc+)

Xi_bcbarminus 

$\overline{\Xi }^{-}_{bc}$ (Xi_bcbar-)

bs_0 

$\mbox{bs}^{0 }$ (bs_0)

bs_0bar 

$\overline{\mbox{bs}}^{0 }$ (bs_0bar)

bs_1 

$\mbox{bs}_{1}$ (bs_1)

bs_1bar 

$\overline{\mbox{bs}}_{1}$ (bs_1bar)

Xiprime_bminus 

$\Xi ^{\prime -}_{b}$ (Xi'_b-)

Xiprime_bbarplus 

$\overline{\Xi }^{\prime +}_{b}$ (Xi'_bbar+)

Xistar_bminus 

$\Xi ^{*-}_{b}$ (Xi*_b-)

Xistar_bbarplus 

$\overline{\Xi }^{*+}_{b}$ (Xi*_bbar+)

Xiprime_b0 

$\Xi ^{\prime 0 }_{b}$ (Xi'_b0)

Xiprime_bbar0 

$\overline{\Xi }^{\prime 0 }_{b}$ (Xi'_bbar0)

Xistar_b0 

$\Xi ^{*0 }_{b}$ (Xi*_b0)

Xistar_bbar0 

$\overline{\Xi }^{*0 }_{b}$ (Xi*_bbar0)

Omega_bminus 

$\Omega ^{-}_{b}$ (Omega_b-)

Omega_bbarplus 

$\overline{\Omega }^{+}_{b}$ (Omega_bbar+)

Omegastar_bminus 

$\Omega ^{*-}_{b}$ (Omega*_b-)

Omegastar_bbarplus 

$\overline{\Omega }^{*+}_{b}$ (Omega*_bbar+)

Omega_bc0 

$\Omega ^{0 }_{bc}$ (Omega_bc0)

Omega_bcbar0 

$\overline{\Omega }^{0 }_{bc}$ (Omega_bcbar0)

bc_0 

$\mbox{bc}^{0 }$ (bc_0)

bc_0bar 

$\overline{\mbox{bc}}^{0 }$ (bc_0bar)

bc_1 

$\mbox{bc}_{1}$ (bc_1)

bc_1bar 

$\overline{\mbox{bc}}_{1}$ (bc_1bar)

Xiprime_bc0 

$\Xi ^{\prime 0 }_{bc}$ (Xi'_bc0)

Xiprime_bcbar0 

$\overline{\Xi }^{\prime 0 }_{bc}$ (Xi'_bcbar0)

Xistar_bc0 

$\Xi ^{*0 }_{bc}$ (Xi*_bc0)

Xistar_bcbar0 

$\overline{\Xi }^{*0 }_{bc}$ (Xi*_bcbar0)

Xiprime_bcplus 

$\Xi ^{\prime +}_{bc}$ (Xi'_bc+)

Xiprime_bcbarminus 

$\overline{\Xi }^{\prime -}_{bc}$ (Xi'_bcbar-)

Xistar_bcplus 

$\Xi ^{*+}_{bc}$ (Xi*_bc+)

Xistar_bcbarminus 

$\overline{\Xi }^{*-}_{bc}$ (Xi*_bcbar-)

Omegaprime_bc0 

$\Omega ^{\prime 0 }_{bc}$ (Omega'_bc0)

Omegaprime_bcba 

$\overline{\Omega }^{\prime }_{bc}$ (Omega'_bcba)

Omegastar_bc0 

$\Omega ^{*0 }_{bc}$ (Omega*_bc0)

Omegastar_bcbar0 

$\overline{\Omega }^{*0 }_{bc}$ (Omega*_bcbar0)

Omega_bccplus 

$\Omega ^{+}_{bcc}$ (Omega_bcc+)

Omega_bccbarminus 

$\overline{\Omega }^{-}_{bcc}$ (Omega_bccbar-)

Omegastar_bccplus 

$\Omega ^{*+}_{bcc}$ (Omega*_bcc+)

Omegastar_bccbarminus 

$\overline{\Omega }^{*-}_{bcc}$ (Omega*_bccbar-)

bb_1 

$\mbox{bb}_{1}$ (bb_1)

bb_1bar 

$\overline{\mbox{bb}}_{1}$ (bb_1bar)

Xi_bbminus 

$\Xi ^{-}_{bb}$ (Xi_bb-)

Xi_bbbarplus 

$\overline{\Xi }^{+}_{bb}$ (Xi_bbbar+)

Xistar_bbminus 

$\Xi ^{*-}_{bb}$ (Xi*_bb-)

Xistar_bbbarplus 

$\overline{\Xi }^{*+}_{bb}$ (Xi*_bbbar+)

Xi_bb0 

$\Xi ^{0 }_{bb}$ (Xi_bb0)

Xi_bbbar0 

$\overline{\Xi }^{0 }_{bb}$ (Xi_bbbar0)

Xistar_bb0 

$\Xi ^{*0 }_{bb}$ (Xi*_bb0)

Xistar_bbbar0 

$\overline{\Xi }^{*0 }_{bb}$ (Xi*_bbbar0)

Omega_bbminus 

$\Omega ^{-}_{bb}$ (Omega_bb-)

Omega_bbbarplus 

$\overline{\Omega }^{+}_{bb}$ (Omega_bbbar+)

Omegastar_bbminus 

$\Omega ^{*-}_{bb}$ (Omega*_bb-)

Omegastar_bbbarplus 

$\overline{\Omega }^{*+}_{bb}$ (Omega*_bbbar+)

Omega_bbc0 

$\Omega ^{0 }_{bbc}$ (Omega_bbc0)

Omega_bbcbar0 

$\overline{\Omega }^{0 }_{bbc}$ (Omega_bbcbar0)

Omegastar_bbc0 

$\Omega ^{*0 }_{bbc}$ (Omega*_bbc0)

Omegastar_bbcbar0 

$\overline{\Omega }^{*0 }_{bbc}$ (Omega*_bbcbar0)

Omegastar_bbbminus 

$\Omega ^{*-}_{bbb}$ (Omega*_bbb-)

Omegastar_bbbbarplus 

$\overline{\Omega }^{*+}_{bbb}$ (Omega*_bbbbar+)

a_00 

$\mbox{a}^{0 }$ (a_00)

b_10 

$\mbox{b}^{0 }_{1}$ (b_10)

a_0plus 

$\mbox{a}^{0 +}$ (a_0+)

a_0minus 

$\mbox{a}^{0 -}$ (a_0-)

b_1plus 

$\mbox{b}^{+}_{1}$ (b_1+)

b_1minus 

$\mbox{b}^{-}_{1}$ (b_1-)

f_0 

$\mbox{f}^{0 }$ (f_0)

h_1 

$\mbox{h}_{1}$ (h_1)

Kstar_00 

$\mbox{K}^{*0 }$ (K*_00)

Kstar_0bar0 

$\overline{\mbox{K}}^{*0 }$ (K*_0bar0)

K_10 

$\mbox{K}^{0 }_{1}$ (K_10)

K_1bar0 

$\overline{\mbox{K}}^{0 }_{1}$ (K_1bar0)

Kstar_0plus 

$\mbox{K}^{*0 +}$ (K*_0+)

Kstar_0minus 

$\mbox{K}^{*0 -}$ (K*_0-)

K_1plus 

$\mbox{K}^{+}_{1}$ (K_1+)

K_1minus 

$\mbox{K}^{-}_{1}$ (K_1-)

eta1440 

$\eta ^{0 }_{144}$ (eta1440)

hprime_1 

$\mbox{h}^{\prime }_{1}$ (h'_1)

Dstar_0plus 

$\mbox{D}^{*0 +}$ (D*_0+)

Dstar_0minus 

$\mbox{D}^{*0 -}$ (D*_0-)

D_1plus 

$\mbox{D}^{+}_{1}$ (D_1+)

D_1minus 

$\mbox{D}^{-}_{1}$ (D_1-)

Dstar_00 

$\mbox{D}^{*0 }$ (D*_00)

Dstar_0bar0 

$\overline{\mbox{D}}^{*0 }$ (D*_0bar0)

D_10 

$\mbox{D}^{0 }_{1}$ (D_10)

D_1bar0 

$\overline{\mbox{D}}^{0 }_{1}$ (D_1bar0)

Dstar_0splus 

$\mbox{D}^{*+}_{0s}$ (D*_0s+)

Dstar_0sminus 

$\mbox{D}^{*-}_{0s}$ (D*_0s-)

D_1splus 

$\mbox{D}^{+}_{1s}$ (D_1s+)

D_1sminus 

$\mbox{D}^{-}_{1s}$ (D_1s-)

chi_0c 

$\chi _{0c}$ (chi_0c)

h_1c 

$\mbox{h}_{1c}$ (h_1c)

Bstar_00 

$\mbox{B}^{*0 }$ (B*_00)

Bstar_0bar0 

$\overline{\mbox{B}}^{*0 }$ (B*_0bar0)

B_10 

$\mbox{B}^{0 }_{1}$ (B_10)

B_1bar0 

$\overline{\mbox{B}}^{0 }_{1}$ (B_1bar0)

Bstar_0plus 

$\mbox{B}^{*0 +}$ (B*_0+)

Bstar_0minus 

$\mbox{B}^{*0 -}$ (B*_0-)

B_1plus 

$\mbox{B}^{+}_{1}$ (B_1+)

B_1minus 

$\mbox{B}^{-}_{1}$ (B_1-)

Bstar_0s0 

$\mbox{B}^{*0 }_{0s}$ (B*_0s0)

Bstar_0sbar0 

$\overline{\mbox{B}}^{*0 }_{0s}$ (B*_0sbar0)

B_1s0 

$\mbox{B}^{0 }_{1s}$ (B_1s0)

B_1sbar0 

$\overline{\mbox{B}}^{0 }_{1s}$ (B_1sbar0)

Bstar_0cplus 

$\mbox{B}^{*+}_{0c}$ (B*_0c+)

Bstar_0cminus 

$\mbox{B}^{*-}_{0c}$ (B*_0c-)

B_1cplus 

$\mbox{B}^{+}_{1c}$ (B_1c+)

B_1cminus 

$\mbox{B}^{-}_{1c}$ (B_1c-)

chi_0b 

$\chi _{0b}$ (chi_0b)

h_1b 

$\mbox{h}_{1b}$ (h_1b)

a_10 

$\mbox{a}^{0 }_{1}$ (a_10)

a_1plus 

$\mbox{a}^{+}_{1}$ (a_1+)

a_1minus 

$\mbox{a}^{-}_{1}$ (a_1-)

f_1 

$\mbox{f}_{1}$ (f_1)

Kstar_10 

$\mbox{K}^{*0 }_{1}$ (K*_10)

Kstar_1bar0 

$\overline{\mbox{K}}^{*0 }_{1}$ (K*_1bar0)

Kstar_1plus 

$\mbox{K}^{*+}_{1}$ (K*_1+)

Kstar_1minus 

$\mbox{K}^{*-}_{1}$ (K*_1-)

fprime_1 

$\mbox{f}^{\prime }_{1}$ (f'_1)

Dstar_1plus 

$\mbox{D}^{*+}_{1}$ (D*_1+)

Dstar_1minus 

$\mbox{D}^{*-}_{1}$ (D*_1-)

Dstar_10 

$\mbox{D}^{*0 }_{1}$ (D*_10)

Dstar_1bar0 

$\overline{\mbox{D}}^{*0 }_{1}$ (D*_1bar0)

Dstar_1splus 

$\mbox{D}^{*+}_{1s}$ (D*_1s+)

Dstar_1sminus 

$\mbox{D}^{*-}_{1s}$ (D*_1s-)

chi_1c 

$\chi _{1c}$ (chi_1c)

Bstar_10 

$\mbox{B}^{*0 }_{1}$ (B*_10)

Bstar_1bar0 

$\overline{\mbox{B}}^{*0 }_{1}$ (B*_1bar0)

Bstar_1plus 

$\mbox{B}^{*+}_{1}$ (B*_1+)

Bstar_1minus 

$\mbox{B}^{*-}_{1}$ (B*_1-)

Bstar_1s0 

$\mbox{B}^{*0 }_{1s}$ (B*_1s0)

Bstar_1sbar0 

$\overline{\mbox{B}}^{*0 }_{1s}$ (B*_1sbar0)

Bstar_1cplus 

$\mbox{B}^{*+}_{1c}$ (B*_1c+)

Bstar_1cminus 

$\mbox{B}^{*-}_{1c}$ (B*_1c-)

chi_1b 

$\chi _{1b}$ (chi_1b)

psiprime 

$\psi ^{\prime }$ (psi')

Upsilonprime 

$\Upsilon ^{\prime }$ (Upsilon')

SUSY_d_L 

$\tilde{\mbox{d}}_{L}$ (~d_L)

SUSY_d_Lbar 

$\tilde{\overline{\mbox{d}}}_{L}$ (~d_Lbar)

SUSY_u_L 

$\tilde{\mbox{u}}_{L}$ (~u_L)

SUSY_u_Lbar 

$\tilde{\overline{\mbox{u}}}_{L}$ (~u_Lbar)

SUSY_s_L 

$\tilde{\mbox{s}}_{L}$ (~s_L)

SUSY_s_Lbar 

$\tilde{\overline{\mbox{s}}}_{L}$ (~s_Lbar)

SUSY_c_L 

$\tilde{\mbox{c}}_{L}$ (~c_L)

SUSY_c_Lbar 

$\tilde{\overline{\mbox{c}}}_{L}$ (~c_Lbar)

SUSY_b_1 

$\tilde{\mbox{b}}_{1}$ (~b_1)

SUSY_b_1bar 

$\tilde{\overline{\mbox{b}}}_{1}$ (~b_1bar)

SUSY_t_1 

$\tilde{\mbox{t}}_{1}$ (~t_1)

SUSY_t_1bar 

$\tilde{\overline{\mbox{t}}}_{1}$ (~t_1bar)

SUSY_e_Lminus 

$\tilde{\mbox{e}}^{-}_{L}$ (~e_L-)

SUSY_e_Lplus 

$\tilde{\mbox{e}}^{+}_{L}$ (~e_L+)

SUSY_nu_eL 

$\tilde{\nu }_{eL}$ (~nu_eL)

SUSY_nu_eLbar 

$\tilde{\overline{\nu }}_{eL}$ (~nu_eLbar)

SUSY_mu_Lminus 

$\tilde{\mu }^{-}_{L}$ (~mu_L-)

SUSY_mu_Lplus 

$\tilde{\mu }^{+}_{L}$ (~mu_L+)

SUSY_nu_muL 

$\tilde{\nu }_{\mu L}$ (~nu_muL)

SUSY_nu_muLbar 

$\tilde{\overline{\nu }}_{\mu L}$ (~nu_muLbar)

SUSY_tau_1minus 

$\tilde{\tau }^{-}_{1}$ (~tau_1-)

SUSY_tau_1plus 

$\tilde{\tau }^{+}_{1}$ (~tau_1+)

SUSY_nu_tauL 

$\tilde{\nu }_{\tau L}$ (~nu_tauL)

SUSY_nu_tauLbar 

$\tilde{\overline{\nu }}_{\tau L}$ (~nu_tauLbar)

SUSY_g 

$\tilde{\mbox{g}}$ (~g)

SUSY_chi_10 

$\tilde{\chi }^{0 }_{1}$ (~chi_10)

SUSY_chi_20 

$\tilde{\chi }^{0 }_{2}$ (~chi_20)

SUSY_chi_1plus 

$\tilde{\chi }^{+}_{1}$ (~chi_1+)

SUSY_chi_1minus 

$\tilde{\chi }^{-}_{1}$ (~chi_1-)

SUSY_chi_30 

$\tilde{\chi }^{0 }_{3}$ (~chi_30)

SUSY_chi_40 

$\tilde{\chi }^{0 }_{4}$ (~chi_40)

SUSY_chi_2plus 

$\tilde{\chi }^{+}_{2}$ (~chi_2+)

SUSY_chi_2minus 

$\tilde{\chi }^{-}_{2}$ (~chi_2-)

SUSY_Gravitino 

$\tilde{{\cal G}}$ (~Gravitino)

SUSY_d_R 

$\tilde{\mbox{d}}_{R}$ (~d_R)

SUSY_d_Rbar 

$\tilde{\overline{\mbox{d}}}_{R}$ (~d_Rbar)

SUSY_u_R 

$\tilde{\mbox{u}}_{R}$ (~u_R)

SUSY_u_Rbar 

$\tilde{\overline{\mbox{u}}}_{R}$ (~u_Rbar)

SUSY_s_R 

$\tilde{\mbox{s}}_{R}$ (~s_R)

SUSY_s_Rbar 

$\tilde{\overline{\mbox{s}}}_{R}$ (~s_Rbar)

SUSY_c_R 

$\tilde{\mbox{c}}_{R}$ (~c_R)

SUSY_c_Rbar 

$\tilde{\overline{\mbox{c}}}_{R}$ (~c_Rbar)

SUSY_b_2 

$\tilde{\mbox{b}}_{2}$ (~b_2)

SUSY_b_2bar 

$\tilde{\overline{\mbox{b}}}_{2}$ (~b_2bar)

SUSY_t_2 

$\tilde{\mbox{t}}_{2}$ (~t_2)

SUSY_t_2bar 

$\tilde{\overline{\mbox{t}}}_{2}$ (~t_2bar)

SUSY_e_Rminus 

$\tilde{\mbox{e}}^{-}_{R}$ (~e_R-)

SUSY_e_Rplus 

$\tilde{\mbox{e}}^{+}_{R}$ (~e_R+)

SUSY_nu_eR 

$\tilde{\nu }_{eR}$ (~nu_eR)

SUSY_nu_eRbar 

$\tilde{\overline{\nu }}_{eR}$ (~nu_eRbar)

SUSY_mu_Rminus 

$\tilde{\mu }^{-}_{R}$ (~mu_R-)

SUSY_mu_Rplus 

$\tilde{\mu }^{+}_{R}$ (~mu_R+)

SUSY_nu_muR 

$\tilde{\nu }_{\mu R}$ (~nu_muR)

SUSY_nu_muRbar 

$\tilde{\overline{\nu }}_{\mu R}$ (~nu_muRbar)

SUSY_tau_2minus 

$\tilde{\tau }^{-}_{2}$ (~tau_2-)

SUSY_tau_2plus 

$\tilde{\tau }^{+}_{2}$ (~tau_2+)

SUSY_nu_tauR 

$\tilde{\nu }_{\tau R}$ (~nu_tauR)

SUSY_nu_tauRbar 

$\tilde{\overline{\nu }}_{\tau R}$ (~nu_tauRbar)

pi_tc0 

$\pi ^{0 }_{tc}$ (pi_tc0)

pi_tcplus 

$\pi ^{+}_{tc}$ (pi_tc+)

pi_tcminus 

$\pi ^{-}_{tc}$ (pi_tc-)

piprime_tc0 

$\pi ^{\prime 0 }_{tc}$ (pi'_tc0)

eta_tc0 

$\eta ^{0 }_{tc}$ (eta_tc0)

rho_tc0 

$\rho ^{0 }_{tc}$ (rho_tc0)

rho_tcplus 

$\rho ^{+}_{tc}$ (rho_tc+)

rho_tcminus 

$\rho ^{-}_{tc}$ (rho_tc-)

omega_tc 

$\omega _{tc}$ (omega_tc)

V8_tc 

$\mbox{V}_{8tc}$ (V8_tc)

pi_22_1_tc 

$\pi _{22}$ (pi_22_1_tc)

pi_22_8_tc 

$\pi _{22}$ (pi_22_8_tc)

rho_11_tc 

$\rho _{11}$ (rho_11_tc)

rho_12_tc 

$\rho _{12}$ (rho_12_tc)

rho_21_tc 

$\rho _{21}$ (rho_21_tc)

rho_22_tc 

$\rho _{22}$ (rho_22_tc)

dstar 

$\mbox{d}^{*}$ (d*)

dstarbar 

$\overline{\mbox{d}}^{*}$ (d*bar)

ustar 

$\mbox{u}^{*}$ (u*)

ustarbar 

$\overline{\mbox{u}}^{*}$ (u*bar)

estarminus 

$\mbox{e}^{*-}$ (e*-)

estarbarplus 

$\overline{\mbox{e}}^{*+}$ (e*bar+)

nustar_e0 

$\nu ^{*0 }_{e}$ (nu*_e0)

nustar_ebar0 

$\overline{\nu }^{*0 }_{e}$ (nu*_ebar0)

Gravitonstar 

${\cal G}^{*}$ (Graviton*)

nu_Re 

$\nu _{Re}$ (nu_Re)

nu_Rmu 

$\nu _{R\mu }$ (nu_Rmu)

nu_Rtau 

$\nu _{R\tau }$ (nu_Rtau)

Z_R0 

$\mbox{Z}^{0 }_{R}$ (Z_R0)

W_Rplus 

$\mbox{W}^{+}_{R}$ (W_R+)

W_Rminus 

$\mbox{W}^{-}_{R}$ (W_R-)

H_Lplus2 

$\mbox{H}^{++}_{L}$ (H_L++)

H_Lminus2 

$\mbox{H}^{--}_{L}$ (H_L–)

H_Rplus2 

$\mbox{H}^{++}_{R}$ (H_R++)

H_Rminus2 

$\mbox{H}^{--}_{R}$ (H_R–)

rho_diff0 

$\rho ^{0 }_{\mbox{\scriptsize diffr}}$ (rho_diff0)

pi_diffrplus 

$\pi ^{+}_{\mbox{\scriptsize diffr}}$ (pi_diffr+)

pi_diffrminus 

$\pi ^{-}_{\mbox{\scriptsize diffr}}$ (pi_diffr-)

omega_di 

$\omega _{\mbox{\scriptsize diffr}}$ (omega_di)

phi_diff 

$\phi _{\mbox{\scriptsize diffr}}$ (phi_diff)

Jpsi_di 

$J/\psi _{\mbox{\scriptsize diffr}}$ (J/psi_di)

n_diffr0 

$\mbox{n}^{0 }_{\mbox{\scriptsize diffr}}$ (n_diffr0)

n_diffrbar0 

$\overline{\mbox{n}}^{0 }_{\mbox{\scriptsize diffr}}$ (n_diffrbar0)

p_diffrplus 

$\mbox{p}^{+}_{\mbox{\scriptsize diffr}}$ (p_diffr+)

p_diffrbarminus 

$\overline{\mbox{p}}^{-}_{\mbox{\scriptsize diffr}}$ (p_diffrbar-)

undefined 

Undefined particle.

Definition at line 23 of file EnumParticles.h.