thepeg is hosted by Hepforge, IPPP Durham
ThePEG 2.3.0
ThePEG::ParticleID Namespace Reference

The ParticleID namespace defines the ParticleCodes enumeration. More...

Enumerations

enum  ParticleCodes {
  d = 1 , dbar = -1 , u = 2 , ubar = -2 ,
  s = 3 , sbar = -3 , c = 4 , cbar = -4 ,
  b = 5 , bbar = -5 , t = 6 , tbar = -6 ,
  bprime = 7 , bprimebar = -7 , tprime = 8 , tprimebar = -8 ,
  eminus = 11 , eplus = -11 , nu_e = 12 , nu_ebar = -12 ,
  muminus = 13 , muplus = -13 , nu_mu = 14 , nu_mubar = -14 ,
  tauminus = 15 , tauplus = -15 , nu_tau = 16 , nu_taubar = -16 ,
  tauprimeminus = 17 , tauprimeplus = -17 , nuprime_tau = 18 , nuprime_taubar = -18 ,
  g = 21 , gamma = 22 , Z0 = 23 , Wplus = 24 ,
  Wminus = -24 , h0 = 25 , Zprime0 = 32 , Zbis0 = 33 ,
  Wprimeplus = 34 , Wprimeminus = -34 , H0 = 35 , A0 = 36 ,
  Hplus = 37 , Hminus = -37 , Graviton = 39 , R0 = 41 ,
  Rbar0 = -41 , LQ_ue = 42 , LQ_uebar = -42 , reggeon = 110 ,
  pi0 = 111 , rho0 = 113 , a_20 = 115 , K_L0 = 130 ,
  piplus = 211 , piminus = -211 , rhoplus = 213 , rhominus = -213 ,
  a_2plus = 215 , a_2minus = -215 , eta = 221 , omega = 223 ,
  f_2 = 225 , K_S0 = 310 , K0 = 311 , Kbar0 = -311 ,
  Kstar0 = 313 , Kstarbar0 = -313 , Kstar_20 = 315 , Kstar_2bar0 = -315 ,
  Kplus = 321 , Kminus = -321 , Kstarplus = 323 , Kstarminus = -323 ,
  Kstar_2plus = 325 , Kstar_2minus = -325 , etaprime = 331 , phi = 333 ,
  fprime_2 = 335 , Dplus = 411 , Dminus = -411 , Dstarplus = 413 ,
  Dstarminus = -413 , Dstar_2plus = 415 , Dstar_2minus = -415 , D0 = 421 ,
  Dbar0 = -421 , Dstar0 = 423 , Dstarbar0 = -423 , Dstar_20 = 425 ,
  Dstar_2bar0 = -425 , D_splus = 431 , D_sminus = -431 , Dstar_splus = 433 ,
  Dstar_sminus = -433 , Dstar_2splus = 435 , Dstar_2sminus = -435 , eta_c = 441 ,
  Jpsi = 443 , chi_2c = 445 , B0 = 511 , Bbar0 = -511 ,
  Bstar0 = 513 , Bstarbar0 = -513 , Bstar_20 = 515 , Bstar_2bar0 = -515 ,
  Bplus = 521 , Bminus = -521 , Bstarplus = 523 , Bstarminus = -523 ,
  Bstar_2plus = 525 , Bstar_2minus = -525 , B_s0 = 531 , B_sbar0 = -531 ,
  Bstar_s0 = 533 , Bstar_sbar0 = -533 , Bstar_2s0 = 535 , Bstar_2sbar0 = -535 ,
  B_cplus = 541 , B_cminus = -541 , Bstar_cplus = 543 , Bstar_cminus = -543 ,
  Bstar_2cplus = 545 , Bstar_2cminus = -545 , eta_b = 551 , Upsilon = 553 ,
  chi_2b = 555 , pomeron = 990 , dd_1 = 1103 , dd_1bar = -1103 ,
  Deltaminus = 1114 , Deltabarplus = -1114 , ud_0 = 2101 , ud_0bar = -2101 ,
  ud_1 = 2103 , ud_1bar = -2103 , n0 = 2112 , nbar0 = -2112 ,
  Delta0 = 2114 , Deltabar0 = -2114 , uu_1 = 2203 , uu_1bar = -2203 ,
  pplus = 2212 , pbarminus = -2212 , Deltaplus = 2214 , Deltabarminus = -2214 ,
  Deltaplus2 = 2224 , Deltabarminus2 = -2224 , sd_0 = 3101 , sd_0bar = -3101 ,
  sd_1 = 3103 , sd_1bar = -3103 , Sigmaminus = 3112 , Sigmabarplus = -3112 ,
  Sigmastarminus = 3114 , Sigmastarbarplus = -3114 , Lambda0 = 3122 , Lambdabar0 = -3122 ,
  su_0 = 3201 , su_0bar = -3201 , su_1 = 3203 , su_1bar = -3203 ,
  Sigma0 = 3212 , Sigmabar0 = -3212 , Sigmastar0 = 3214 , Sigmastarbar0 = -3214 ,
  Sigmaplus = 3222 , Sigmabarminus = -3222 , Sigmastarplus = 3224 , Sigmastarbarminus = -3224 ,
  ss_1 = 3303 , ss_1bar = -3303 , Ximinus = 3312 , Xibarplus = -3312 ,
  Xistarminus = 3314 , Xistarbarplus = -3314 , Xi0 = 3322 , Xibar0 = -3322 ,
  Xistar0 = 3324 , Xistarbar0 = -3324 , Omegaminus = 3334 , Omegabarplus = -3334 ,
  cd_0 = 4101 , cd_0bar = -4101 , cd_1 = 4103 , cd_1bar = -4103 ,
  Sigma_c0 = 4112 , Sigma_cbar0 = -4112 , Sigmastar_c0 = 4114 , Sigmastar_cbar0 = -4114 ,
  Lambda_cplus = 4122 , Lambda_cbarminus = -4122 , Xi_c0 = 4132 , Xi_cbar0 = -4132 ,
  cu_0 = 4201 , cu_0bar = -4201 , cu_1 = 4203 , cu_1bar = -4203 ,
  Sigma_cplus = 4212 , Sigma_cbarminus = -4212 , Sigmastar_cplus = 4214 , Sigmastar_cbarminus = -4214 ,
  Sigma_cplus2 = 4222 , Sigma_cbarminus2 = -4222 , Sigmastar_cplus2 = 4224 , Sigmastar_cbarminus2 = -4224 ,
  Xi_cplus = 4232 , Xi_cbarminus = -4232 , cs_0 = 4301 , cs_0bar = -4301 ,
  cs_1 = 4303 , cs_1bar = -4303 , Xiprime_c0 = 4312 , Xiprime_cbar0 = -4312 ,
  Xistar_c0 = 4314 , Xistar_cbar0 = -4314 , Xiprime_cplus = 4322 , Xiprime_cbarminus = -4322 ,
  Xistar_cplus = 4324 , Xistar_cbarminus = -4324 , Omega_c0 = 4332 , Omega_cbar0 = -4332 ,
  Omegastar_c0 = 4334 , Omegastar_cbar0 = -4334 , cc_1 = 4403 , cc_1bar = -4403 ,
  Xi_ccplus = 4412 , Xi_ccbarminus = -4412 , Xistar_ccplus = 4414 , Xistar_ccbarminus = -4414 ,
  Xi_ccplus2 = 4422 , Xi_ccbarminus2 = -4422 , Xistar_ccplus2 = 4424 , Xistar_ccbarminus2 = -4424 ,
  Omega_ccplus = 4432 , Omega_ccbarminus = -4432 , Omegastar_ccplus = 4434 , Omegastar_ccbarminus = -4434 ,
  Omegastar_cccplus2 = 4444 , Omegastar_cccbarminus = -4444 , bd_0 = 5101 , bd_0bar = -5101 ,
  bd_1 = 5103 , bd_1bar = -5103 , Sigma_bminus = 5112 , Sigma_bbarplus = -5112 ,
  Sigmastar_bminus = 5114 , Sigmastar_bbarplus = -5114 , Lambda_b0 = 5122 , Lambda_bbar0 = -5122 ,
  Xi_bminus = 5132 , Xi_bbarplus = -5132 , Xi_bc0 = 5142 , Xi_bcbar0 = -5142 ,
  bu_0 = 5201 , bu_0bar = -5201 , bu_1 = 5203 , bu_1bar = -5203 ,
  Sigma_b0 = 5212 , Sigma_bbar0 = -5212 , Sigmastar_b0 = 5214 , Sigmastar_bbar0 = -5214 ,
  Sigma_bplus = 5222 , Sigma_bbarminus = -5222 , Sigmastar_bplus = 5224 , Sigmastar_bbarminus = -5224 ,
  Xi_b0 = 5232 , Xi_bbar0 = -5232 , Xi_bcplus = 5242 , Xi_bcbarminus = -5242 ,
  bs_0 = 5301 , bs_0bar = -5301 , bs_1 = 5303 , bs_1bar = -5303 ,
  Xiprime_bminus = 5312 , Xiprime_bbarplus = -5312 , Xistar_bminus = 5314 , Xistar_bbarplus = -5314 ,
  Xiprime_b0 = 5322 , Xiprime_bbar0 = -5322 , Xistar_b0 = 5324 , Xistar_bbar0 = -5324 ,
  Omega_bminus = 5332 , Omega_bbarplus = -5332 , Omegastar_bminus = 5334 , Omegastar_bbarplus = -5334 ,
  Omega_bc0 = 5342 , Omega_bcbar0 = -5342 , bc_0 = 5401 , bc_0bar = -5401 ,
  bc_1 = 5403 , bc_1bar = -5403 , Xiprime_bc0 = 5412 , Xiprime_bcbar0 = -5412 ,
  Xistar_bc0 = 5414 , Xistar_bcbar0 = -5414 , Xiprime_bcplus = 5422 , Xiprime_bcbarminus = -5422 ,
  Xistar_bcplus = 5424 , Xistar_bcbarminus = -5424 , Omegaprime_bc0 = 5432 , Omegaprime_bcba = -5432 ,
  Omegastar_bc0 = 5434 , Omegastar_bcbar0 = -5434 , Omega_bccplus = 5442 , Omega_bccbarminus = -5442 ,
  Omegastar_bccplus = 5444 , Omegastar_bccbarminus = -5444 , bb_1 = 5503 , bb_1bar = -5503 ,
  Xi_bbminus = 5512 , Xi_bbbarplus = -5512 , Xistar_bbminus = 5514 , Xistar_bbbarplus = -5514 ,
  Xi_bb0 = 5522 , Xi_bbbar0 = -5522 , Xistar_bb0 = 5524 , Xistar_bbbar0 = -5524 ,
  Omega_bbminus = 5532 , Omega_bbbarplus = -5532 , Omegastar_bbminus = 5534 , Omegastar_bbbarplus = -5534 ,
  Omega_bbc0 = 5542 , Omega_bbcbar0 = -5542 , Omegastar_bbc0 = 5544 , Omegastar_bbcbar0 = -5544 ,
  Omegastar_bbbminus = 5554 , Omegastar_bbbbarplus = -5554 , a_00 = 9000111 , b_10 = 10113 ,
  a_0plus = 9000211 , a_0minus = -9000211 , b_1plus = 10213 , b_1minus = -10213 ,
  f_0 = 9010221 , h_1 = 10223 , Kstar_00 = 10311 , Kstar_0bar0 = -10311 ,
  K_10 = 10313 , K_1bar0 = -10313 , Kstar_0plus = 10321 , Kstar_0minus = -10321 ,
  K_1plus = 10323 , K_1minus = -10323 , eta1440 = 100331 , hprime_1 = 10333 ,
  Dstar_0plus = 10411 , Dstar_0minus = -10411 , D_1plus = 10413 , D_1minus = -10413 ,
  Dstar_00 = 10421 , Dstar_0bar0 = -10421 , D_10 = 10423 , D_1bar0 = -10423 ,
  Dstar_0splus = 10431 , Dstar_0sminus = -10431 , D_1splus = 10433 , D_1sminus = -10433 ,
  chi_0c = 10441 , h_1c = 10443 , Bstar_00 = 10511 , Bstar_0bar0 = -10511 ,
  B_10 = 10513 , B_1bar0 = -10513 , Bstar_0plus = 10521 , Bstar_0minus = -10521 ,
  B_1plus = 10523 , B_1minus = -10523 , Bstar_0s0 = 10531 , Bstar_0sbar0 = -10531 ,
  B_1s0 = 10533 , B_1sbar0 = -10533 , Bstar_0cplus = 10541 , Bstar_0cminus = -10541 ,
  B_1cplus = 10543 , B_1cminus = -10543 , chi_0b = 10551 , h_1b = 10553 ,
  a_10 = 20113 , a_1plus = 20213 , a_1minus = -20213 , f_1 = 20223 ,
  Kstar_10 = 20313 , Kstar_1bar0 = -20313 , Kstar_1plus = 20323 , Kstar_1minus = -20323 ,
  fprime_1 = 20333 , Dstar_1plus = 20413 , Dstar_1minus = -20413 , Dstar_10 = 20423 ,
  Dstar_1bar0 = -20423 , Dstar_1splus = 20433 , Dstar_1sminus = -20433 , chi_1c = 20443 ,
  Bstar_10 = 20513 , Bstar_1bar0 = -20513 , Bstar_1plus = 20523 , Bstar_1minus = -20523 ,
  Bstar_1s0 = 20533 , Bstar_1sbar0 = -20533 , Bstar_1cplus = 20543 , Bstar_1cminus = -20543 ,
  chi_1b = 20553 , psiprime = 100443 , Upsilonprime = 100553 , SUSY_d_L = 1000001 ,
  SUSY_d_Lbar = -1000001 , SUSY_u_L = 1000002 , SUSY_u_Lbar = -1000002 , SUSY_s_L = 1000003 ,
  SUSY_s_Lbar = -1000003 , SUSY_c_L = 1000004 , SUSY_c_Lbar = -1000004 , SUSY_b_1 = 1000005 ,
  SUSY_b_1bar = -1000005 , SUSY_t_1 = 1000006 , SUSY_t_1bar = -1000006 , SUSY_e_Lminus = 1000011 ,
  SUSY_e_Lplus = -1000011 , SUSY_nu_eL = 1000012 , SUSY_nu_eLbar = -1000012 , SUSY_mu_Lminus = 1000013 ,
  SUSY_mu_Lplus = -1000013 , SUSY_nu_muL = 1000014 , SUSY_nu_muLbar = -1000014 , SUSY_tau_1minus = 1000015 ,
  SUSY_tau_1plus = -1000015 , SUSY_nu_tauL = 1000016 , SUSY_nu_tauLbar = -1000016 , SUSY_g = 1000021 ,
  SUSY_chi_10 = 1000022 , SUSY_chi_20 = 1000023 , SUSY_chi_1plus = 1000024 , SUSY_chi_1minus = -1000024 ,
  SUSY_chi_30 = 1000025 , SUSY_chi_40 = 1000035 , SUSY_chi_2plus = 1000037 , SUSY_chi_2minus = -1000037 ,
  SUSY_Gravitino = 1000039 , SUSY_d_R = 2000001 , SUSY_d_Rbar = -2000001 , SUSY_u_R = 2000002 ,
  SUSY_u_Rbar = -2000002 , SUSY_s_R = 2000003 , SUSY_s_Rbar = -2000003 , SUSY_c_R = 2000004 ,
  SUSY_c_Rbar = -2000004 , SUSY_b_2 = 2000005 , SUSY_b_2bar = -2000005 , SUSY_t_2 = 2000006 ,
  SUSY_t_2bar = -2000006 , SUSY_e_Rminus = 2000011 , SUSY_e_Rplus = -2000011 , SUSY_nu_eR = 2000012 ,
  SUSY_nu_eRbar = -2000012 , SUSY_mu_Rminus = 2000013 , SUSY_mu_Rplus = -2000013 , SUSY_nu_muR = 2000014 ,
  SUSY_nu_muRbar = -2000014 , SUSY_tau_2minus = 2000015 , SUSY_tau_2plus = -2000015 , SUSY_nu_tauR = 2000016 ,
  SUSY_nu_tauRbar = -2000016 , pi_tc0 = 3000111 , pi_tcplus = 3000211 , pi_tcminus = -3000211 ,
  piprime_tc0 = 3000221 , eta_tc0 = 3000331 , rho_tc0 = 3000113 , rho_tcplus = 3000213 ,
  rho_tcminus = -3000213 , omega_tc = 3000223 , V8_tc = 3100021 , pi_22_1_tc = 3100111 ,
  pi_22_8_tc = 3200111 , rho_11_tc = 3100113 , rho_12_tc = 3200113 , rho_21_tc = 3300113 ,
  rho_22_tc = 3400113 , dstar = 4000001 , dstarbar = -4000001 , ustar = 4000002 ,
  ustarbar = -4000002 , estarminus = 4000011 , estarbarplus = -4000011 , nustar_e0 = 4000012 ,
  nustar_ebar0 = -4000012 , Gravitonstar = 5000039 , nu_Re = 9900012 , nu_Rmu = 9900014 ,
  nu_Rtau = 9900016 , Z_R0 = 9900023 , W_Rplus = 9900024 , W_Rminus = -9900024 ,
  H_Lplus2 = 9900041 , H_Lminus2 = -9900041 , H_Rplus2 = 9900042 , H_Rminus2 = -9900042 ,
  rho_diff0 = 9900110 , pi_diffrplus = 9900210 , pi_diffrminus = -9900210 , omega_di = 9900220 ,
  phi_diff = 9900330 , Jpsi_di = 9900440 , n_diffr0 = 9902110 , n_diffrbar0 = -9902110 ,
  p_diffrplus = 9902210 , p_diffrbarminus = -9902210 , undefined = 0
}
 Enumeration to give identifiers to PDG id numbers. More...
 

Detailed Description

The ParticleID namespace defines the ParticleCodes enumeration.

Enumeration Type Documentation

◆ ParticleCodes

Enumeration to give identifiers to PDG id numbers.

Enumerator

\(\mbox{d}\) (d)

dbar 

\(\overline{\mbox{d}}\) (dbar)

\(\mbox{u}\) (u)

ubar 

\(\overline{\mbox{u}}\) (ubar)

\(\mbox{s}\) (s)

sbar 

\(\overline{\mbox{s}}\) (sbar)

\(\mbox{c}\) (c)

cbar 

\(\overline{\mbox{c}}\) (cbar)

\(\mbox{b}\) (b)

bbar 

\(\overline{\mbox{b}}\) (bbar)

\(\mbox{t}\) (t)

tbar 

\(\overline{\mbox{t}}\) (tbar)

bprime 

\(\mbox{b}^{\prime }\) (b')

bprimebar 

\(\overline{\mbox{b}}^{\prime }\) (b'bar)

tprime 

\(\mbox{t}^{\prime }\) (t')

tprimebar 

\(\overline{\mbox{t}}^{\prime }\) (t'bar)

eminus 

\(\mbox{e}^{-}\) (e-)

eplus 

\(\mbox{e}^{+}\) (e+)

nu_e 

\(\nu _{e}\) (nu_e)

nu_ebar 

\(\overline{\nu }_{e}\) (nu_ebar)

muminus 

\(\mu ^{-}\) (mu-)

muplus 

\(\mu ^{+}\) (mu+)

nu_mu 

\(\nu _{\mu }\) (nu_mu)

nu_mubar 

\(\overline{\nu }_{\mu }\) (nu_mubar)

tauminus 

\(\tau ^{-}\) (tau-)

tauplus 

\(\tau ^{+}\) (tau+)

nu_tau 

\(\nu _{\tau }\) (nu_tau)

nu_taubar 

\(\overline{\nu }_{\tau }\) (nu_taubar)

tauprimeminus 

\(\tau ^{\prime -}\) (tau'-)

tauprimeplus 

\(\tau ^{\prime +}\) (tau'+)

nuprime_tau 

\(\nu ^{\prime }_{\tau }\) (nu'_tau)

nuprime_taubar 

\(\overline{\nu }^{\prime }_{\tau }\) (nu'_taubar)

\(\mbox{g}\) (g)

gamma 

\(\gamma \) (gamma)

Z0 

\(\mbox{Z}^{0 }\) (Z0)

Wplus 

\(\mbox{W}^{+}\) (W+)

Wminus 

\(\mbox{W}^{-}\) (W-)

h0 

\(\mbox{h}^{0 }\) (h0)

Zprime0 

\(\mbox{Z}^{\prime 0 }\) (Z'0)

Zbis0 

\(\mbox{Z}^{\prime\prime 0 }\) (Z"0)

Wprimeplus 

\(\mbox{W}^{\prime +}\) (W'+)

Wprimeminus 

\(\mbox{W}^{\prime -}\) (W'-)

H0 

\(\mbox{H}^{0 }\) (H0)

A0 

\(\mbox{A}^{0 }\) (A0)

Hplus 

\(\mbox{H}^{+}\) (H+)

Hminus 

\(\mbox{H}^{-}\) (H-)

Graviton 

\({\cal G}\) (Graviton)

R0 

\(\mbox{R}^{0 }\) (R0)

Rbar0 

\(\overline{\mbox{R}}^{0 }\) (Rbar0)

LQ_ue 

\(\mbox{L}_{Que}\) (LQ_ue)

LQ_uebar 

\(\overline{\mbox{L}}_{Que}\) (LQ_uebar)

reggeon 

\(I\!\!R\) (reggeon)

pi0 

\(\pi ^{0 }\) (pi0)

rho0 

\(\rho ^{0 }\) (rho0)

a_20 

\(\mbox{a}^{0 }_{2}\) (a_20)

K_L0 

\(\mbox{K}^{0 }_{L}\) (K_L0)

piplus 

\(\pi ^{+}\) (pi+)

piminus 

\(\pi ^{-}\) (pi-)

rhoplus 

\(\rho ^{+}\) (rho+)

rhominus 

\(\rho ^{-}\) (rho-)

a_2plus 

\(\mbox{a}^{+}_{2}\) (a_2+)

a_2minus 

\(\mbox{a}^{-}_{2}\) (a_2-)

eta 

\(\eta \) (eta)

omega 

\(\omega \) (omega)

f_2 

\(\mbox{f}_{2}\) (f_2)

K_S0 

\(\mbox{K}^{0 }_{S}\) (K_S0)

K0 

\(\mbox{K}^{0 }\) (K0)

Kbar0 

\(\overline{\mbox{K}}^{0 }\) (Kbar0)

Kstar0 

\(\mbox{K}^{*0 }\) (K*0)

Kstarbar0 

\(\overline{\mbox{K}}^{*0 }\) (K*bar0)

Kstar_20 

\(\mbox{K}^{*0 }_{2}\) (K*_20)

Kstar_2bar0 

\(\overline{\mbox{K}}^{*0 }_{2}\) (K*_2bar0)

Kplus 

\(\mbox{K}^{+}\) (K+)

Kminus 

\(\mbox{K}^{-}\) (K-)

Kstarplus 

\(\mbox{K}^{*+}\) (K*+)

Kstarminus 

\(\mbox{K}^{*-}\) (K*-)

Kstar_2plus 

\(\mbox{K}^{*+}_{2}\) (K*_2+)

Kstar_2minus 

\(\mbox{K}^{*-}_{2}\) (K*_2-)

etaprime 

\(\eta ^{\prime }\) (eta')

phi 

\(\phi \) (phi)

fprime_2 

\(\mbox{f}^{\prime }_{2}\) (f'_2)

Dplus 

\(\mbox{D}^{+}\) (D+)

Dminus 

\(\mbox{D}^{-}\) (D-)

Dstarplus 

\(\mbox{D}^{*+}\) (D*+)

Dstarminus 

\(\mbox{D}^{*-}\) (D*-)

Dstar_2plus 

\(\mbox{D}^{*+}_{2}\) (D*_2+)

Dstar_2minus 

\(\mbox{D}^{*-}_{2}\) (D*_2-)

D0 

\(\mbox{D}^{0 }\) (D0)

Dbar0 

\(\overline{\mbox{D}}^{0 }\) (Dbar0)

Dstar0 

\(\mbox{D}^{*0 }\) (D*0)

Dstarbar0 

\(\overline{\mbox{D}}^{*0 }\) (D*bar0)

Dstar_20 

\(\mbox{D}^{*0 }_{2}\) (D*_20)

Dstar_2bar0 

\(\overline{\mbox{D}}^{*0 }_{2}\) (D*_2bar0)

D_splus 

\(\mbox{D}^{+}_{s}\) (D_s+)

D_sminus 

\(\mbox{D}^{-}_{s}\) (D_s-)

Dstar_splus 

\(\mbox{D}^{*+}_{s}\) (D*_s+)

Dstar_sminus 

\(\mbox{D}^{*-}_{s}\) (D*_s-)

Dstar_2splus 

\(\mbox{D}^{*+}_{2s}\) (D*_2s+)

Dstar_2sminus 

\(\mbox{D}^{*-}_{2s}\) (D*_2s-)

eta_c 

\(\eta _{c}\) (eta_c)

Jpsi 

\(J/\psi \) (J/psi)

chi_2c 

\(\chi _{2c}\) (chi_2c)

B0 

\(\mbox{B}^{0 }\) (B0)

Bbar0 

\(\overline{\mbox{B}}^{0 }\) (Bbar0)

Bstar0 

\(\mbox{B}^{*0 }\) (B*0)

Bstarbar0 

\(\overline{\mbox{B}}^{*0 }\) (B*bar0)

Bstar_20 

\(\mbox{B}^{*0 }_{2}\) (B*_20)

Bstar_2bar0 

\(\overline{\mbox{B}}^{*0 }_{2}\) (B*_2bar0)

Bplus 

\(\mbox{B}^{+}\) (B+)

Bminus 

\(\mbox{B}^{-}\) (B-)

Bstarplus 

\(\mbox{B}^{*+}\) (B*+)

Bstarminus 

\(\mbox{B}^{*-}\) (B*-)

Bstar_2plus 

\(\mbox{B}^{*+}_{2}\) (B*_2+)

Bstar_2minus 

\(\mbox{B}^{*-}_{2}\) (B*_2-)

B_s0 

\(\mbox{B}^{0 }_{s}\) (B_s0)

B_sbar0 

\(\overline{\mbox{B}}^{0 }_{s}\) (B_sbar0)

Bstar_s0 

\(\mbox{B}^{*0 }_{s}\) (B*_s0)

Bstar_sbar0 

\(\overline{\mbox{B}}^{*0 }_{s}\) (B*_sbar0)

Bstar_2s0 

\(\mbox{B}^{*0 }_{2s}\) (B*_2s0)

Bstar_2sbar0 

\(\overline{\mbox{B}}^{*0 }_{2s}\) (B*_2sbar0)

B_cplus 

\(\mbox{B}^{+}_{c}\) (B_c+)

B_cminus 

\(\mbox{B}^{-}_{c}\) (B_c-)

Bstar_cplus 

\(\mbox{B}^{*+}_{c}\) (B*_c+)

Bstar_cminus 

\(\mbox{B}^{*-}_{c}\) (B*_c-)

Bstar_2cplus 

\(\mbox{B}^{*+}_{2c}\) (B*_2c+)

Bstar_2cminus 

\(\mbox{B}^{*-}_{2c}\) (B*_2c-)

eta_b 

\(\eta _{b}\) (eta_b)

Upsilon 

\(\Upsilon \) (Upsilon)

chi_2b 

\(\chi _{2b}\) (chi_2b)

pomeron 

\(I\!\!P\) (pomeron)

dd_1 

\(\mbox{dd}_{1}\) (dd_1)

dd_1bar 

\(\overline{\mbox{dd}}_{1}\) (dd_1bar)

Deltaminus 

\(\Delta ^{-}\) (Delta-)

Deltabarplus 

\(\overline{\Delta }^{+}\) (Deltabar+)

ud_0 

\(\mbox{ud}^{0 }\) (ud_0)

ud_0bar 

\(\overline{\mbox{ud}}^{0 }\) (ud_0bar)

ud_1 

\(\mbox{ud}_{1}\) (ud_1)

ud_1bar 

\(\overline{\mbox{ud}}_{1}\) (ud_1bar)

n0 

\(\mbox{n}^{0 }\) (n0)

nbar0 

\(\overline{\mbox{n}}^{0 }\) (nbar0)

Delta0 

\(\Delta ^{0 }\) (Delta0)

Deltabar0 

\(\overline{\Delta }^{0 }\) (Deltabar0)

uu_1 

\(\mbox{uu}_{1}\) (uu_1)

uu_1bar 

\(\overline{\mbox{uu}}_{1}\) (uu_1bar)

pplus 

\(\mbox{p}^{+}\) (p+)

pbarminus 

\(\overline{\mbox{p}}^{-}\) (pbar-)

Deltaplus 

\(\Delta ^{+}\) (Delta+)

Deltabarminus 

\(\overline{\Delta }^{-}\) (Deltabar-)

Deltaplus2 

\(\Delta ^{++}\) (Delta++)

Deltabarminus2 

\(\overline{\Delta }^{--}\) (Deltabar–)

sd_0 

\(\mbox{sd}^{0 }\) (sd_0)

sd_0bar 

\(\overline{\mbox{sd}}^{0 }\) (sd_0bar)

sd_1 

\(\mbox{sd}_{1}\) (sd_1)

sd_1bar 

\(\overline{\mbox{sd}}_{1}\) (sd_1bar)

Sigmaminus 

\(\Sigma ^{-}\) (Sigma-)

Sigmabarplus 

\(\overline{\Sigma }^{+}\) (Sigmabar+)

Sigmastarminus 

\(\Sigma ^{*-}\) (Sigma*-)

Sigmastarbarplus 

\(\overline{\Sigma }^{*+}\) (Sigma*bar+)

Lambda0 

\(\Lambda ^{0 }\) (Lambda0)

Lambdabar0 

\(\overline{\Lambda }^{0 }\) (Lambdabar0)

su_0 

\(\mbox{su}^{0 }\) (su_0)

su_0bar 

\(\overline{\mbox{su}}^{0 }\) (su_0bar)

su_1 

\(\mbox{su}_{1}\) (su_1)

su_1bar 

\(\overline{\mbox{su}}_{1}\) (su_1bar)

Sigma0 

\(\Sigma ^{0 }\) (Sigma0)

Sigmabar0 

\(\overline{\Sigma }^{0 }\) (Sigmabar0)

Sigmastar0 

\(\Sigma ^{*0 }\) (Sigma*0)

Sigmastarbar0 

\(\overline{\Sigma }^{*0 }\) (Sigma*bar0)

Sigmaplus 

\(\Sigma ^{+}\) (Sigma+)

Sigmabarminus 

\(\overline{\Sigma }^{-}\) (Sigmabar-)

Sigmastarplus 

\(\Sigma ^{*+}\) (Sigma*+)

Sigmastarbarminus 

\(\overline{\Sigma }^{*-}\) (Sigma*bar-)

ss_1 

\(\mbox{ss}_{1}\) (ss_1)

ss_1bar 

\(\overline{\mbox{ss}}_{1}\) (ss_1bar)

Ximinus 

\(\Xi ^{-}\) (Xi-)

Xibarplus 

\(\overline{\Xi }^{+}\) (Xibar+)

Xistarminus 

\(\Xi ^{*-}\) (Xi*-)

Xistarbarplus 

\(\overline{\Xi }^{*+}\) (Xi*bar+)

Xi0 

\(\Xi ^{0 }\) (Xi0)

Xibar0 

\(\overline{\Xi }^{0 }\) (Xibar0)

Xistar0 

\(\Xi ^{*0 }\) (Xi*0)

Xistarbar0 

\(\overline{\Xi }^{*0 }\) (Xi*bar0)

Omegaminus 

\(\Omega ^{-}\) (Omega-)

Omegabarplus 

\(\overline{\Omega }^{+}\) (Omegabar+)

cd_0 

\(\mbox{cd}^{0 }\) (cd_0)

cd_0bar 

\(\overline{\mbox{cd}}^{0 }\) (cd_0bar)

cd_1 

\(\mbox{cd}_{1}\) (cd_1)

cd_1bar 

\(\overline{\mbox{cd}}_{1}\) (cd_1bar)

Sigma_c0 

\(\Sigma ^{0 }_{c}\) (Sigma_c0)

Sigma_cbar0 

\(\overline{\Sigma }^{0 }_{c}\) (Sigma_cbar0)

Sigmastar_c0 

\(\Sigma ^{*0 }_{c}\) (Sigma*_c0)

Sigmastar_cbar0 

\(\overline{\Sigma }^{*0 }_{c}\) (Sigma*_cbar0)

Lambda_cplus 

\(\Lambda ^{+}_{c}\) (Lambda_c+)

Lambda_cbarminus 

\(\overline{\Lambda }^{-}_{c}\) (Lambda_cbar-)

Xi_c0 

\(\Xi ^{0 }_{c}\) (Xi_c0)

Xi_cbar0 

\(\overline{\Xi }^{0 }_{c}\) (Xi_cbar0)

cu_0 

\(\mbox{cu}^{0 }\) (cu_0)

cu_0bar 

\(\overline{\mbox{cu}}^{0 }\) (cu_0bar)

cu_1 

\(\mbox{cu}_{1}\) (cu_1)

cu_1bar 

\(\overline{\mbox{cu}}_{1}\) (cu_1bar)

Sigma_cplus 

\(\Sigma ^{+}_{c}\) (Sigma_c+)

Sigma_cbarminus 

\(\overline{\Sigma }^{-}_{c}\) (Sigma_cbar-)

Sigmastar_cplus 

\(\Sigma ^{*+}_{c}\) (Sigma*_c+)

Sigmastar_cbarminus 

\(\overline{\Sigma }^{*-}_{c}\) (Sigma*_cbar-)

Sigma_cplus2 

\(\Sigma ^{++}_{c}\) (Sigma_c++)

Sigma_cbarminus2 

\(\overline{\Sigma }^{--}_{c}\) (Sigma_cbar–)

Sigmastar_cplus2 

\(\Sigma ^{*++}_{c}\) (Sigma*_c++)

Sigmastar_cbarminus2 

\(\overline{\Sigma }^{*--}_{c}\) (Sigma*_cbar–)

Xi_cplus 

\(\Xi ^{+}_{c}\) (Xi_c+)

Xi_cbarminus 

\(\overline{\Xi }^{-}_{c}\) (Xi_cbar-)

cs_0 

\(\mbox{cs}^{0 }\) (cs_0)

cs_0bar 

\(\overline{\mbox{cs}}^{0 }\) (cs_0bar)

cs_1 

\(\mbox{cs}_{1}\) (cs_1)

cs_1bar 

\(\overline{\mbox{cs}}_{1}\) (cs_1bar)

Xiprime_c0 

\(\Xi ^{\prime 0 }_{c}\) (Xi'_c0)

Xiprime_cbar0 

\(\overline{\Xi }^{\prime 0 }_{c}\) (Xi'_cbar0)

Xistar_c0 

\(\Xi ^{*0 }_{c}\) (Xi*_c0)

Xistar_cbar0 

\(\overline{\Xi }^{*0 }_{c}\) (Xi*_cbar0)

Xiprime_cplus 

\(\Xi ^{\prime +}_{c}\) (Xi'_c+)

Xiprime_cbarminus 

\(\overline{\Xi }^{\prime -}_{c}\) (Xi'_cbar-)

Xistar_cplus 

\(\Xi ^{*+}_{c}\) (Xi*_c+)

Xistar_cbarminus 

\(\overline{\Xi }^{*-}_{c}\) (Xi*_cbar-)

Omega_c0 

\(\Omega ^{0 }_{c}\) (Omega_c0)

Omega_cbar0 

\(\overline{\Omega }^{0 }_{c}\) (Omega_cbar0)

Omegastar_c0 

\(\Omega ^{*0 }_{c}\) (Omega*_c0)

Omegastar_cbar0 

\(\overline{\Omega }^{*0 }_{c}\) (Omega*_cbar0)

cc_1 

\(\mbox{cc}_{1}\) (cc_1)

cc_1bar 

\(\overline{\mbox{cc}}_{1}\) (cc_1bar)

Xi_ccplus 

\(\Xi ^{+}_{cc}\) (Xi_cc+)

Xi_ccbarminus 

\(\overline{\Xi }^{-}_{cc}\) (Xi_ccbar-)

Xistar_ccplus 

\(\Xi ^{*+}_{cc}\) (Xi*_cc+)

Xistar_ccbarminus 

\(\overline{\Xi }^{*-}_{cc}\) (Xi*_ccbar-)

Xi_ccplus2 

\(\Xi ^{++}_{cc}\) (Xi_cc++)

Xi_ccbarminus2 

\(\overline{\Xi }^{--}_{cc}\) (Xi_ccbar–)

Xistar_ccplus2 

\(\Xi ^{*++}_{cc}\) (Xi*_cc++)

Xistar_ccbarminus2 

\(\overline{\Xi }^{*--}_{cc}\) (Xi*_ccbar–)

Omega_ccplus 

\(\Omega ^{+}_{cc}\) (Omega_cc+)

Omega_ccbarminus 

\(\overline{\Omega }^{-}_{cc}\) (Omega_ccbar-)

Omegastar_ccplus 

\(\Omega ^{*+}_{cc}\) (Omega*_cc+)

Omegastar_ccbarminus 

\(\overline{\Omega }^{*-}_{cc}\) (Omega*_ccbar-)

Omegastar_cccplus2 

\(\Omega ^{*++}_{ccc}\) (Omega*_ccc++)

Omegastar_cccbarminus 

\(\overline{\Omega }^{*-}_{ccc}\) (Omega*_cccbar-)

bd_0 

\(\mbox{bd}^{0 }\) (bd_0)

bd_0bar 

\(\overline{\mbox{bd}}^{0 }\) (bd_0bar)

bd_1 

\(\mbox{bd}_{1}\) (bd_1)

bd_1bar 

\(\overline{\mbox{bd}}_{1}\) (bd_1bar)

Sigma_bminus 

\(\Sigma ^{-}_{b}\) (Sigma_b-)

Sigma_bbarplus 

\(\overline{\Sigma }^{+}_{b}\) (Sigma_bbar+)

Sigmastar_bminus 

\(\Sigma ^{*-}_{b}\) (Sigma*_b-)

Sigmastar_bbarplus 

\(\overline{\Sigma }^{*+}_{b}\) (Sigma*_bbar+)

Lambda_b0 

\(\Lambda ^{0 }_{b}\) (Lambda_b0)

Lambda_bbar0 

\(\overline{\Lambda }^{0 }_{b}\) (Lambda_bbar0)

Xi_bminus 

\(\Xi ^{-}_{b}\) (Xi_b-)

Xi_bbarplus 

\(\overline{\Xi }^{+}_{b}\) (Xi_bbar+)

Xi_bc0 

\(\Xi ^{0 }_{bc}\) (Xi_bc0)

Xi_bcbar0 

\(\overline{\Xi }^{0 }_{bc}\) (Xi_bcbar0)

bu_0 

\(\mbox{bu}^{0 }\) (bu_0)

bu_0bar 

\(\overline{\mbox{bu}}^{0 }\) (bu_0bar)

bu_1 

\(\mbox{bu}_{1}\) (bu_1)

bu_1bar 

\(\overline{\mbox{bu}}_{1}\) (bu_1bar)

Sigma_b0 

\(\Sigma ^{0 }_{b}\) (Sigma_b0)

Sigma_bbar0 

\(\overline{\Sigma }^{0 }_{b}\) (Sigma_bbar0)

Sigmastar_b0 

\(\Sigma ^{*0 }_{b}\) (Sigma*_b0)

Sigmastar_bbar0 

\(\overline{\Sigma }^{*0 }_{b}\) (Sigma*_bbar0)

Sigma_bplus 

\(\Sigma ^{+}_{b}\) (Sigma_b+)

Sigma_bbarminus 

\(\overline{\Sigma }^{-}_{b}\) (Sigma_bbar-)

Sigmastar_bplus 

\(\Sigma ^{*+}_{b}\) (Sigma*_b+)

Sigmastar_bbarminus 

\(\overline{\Sigma }^{*-}_{b}\) (Sigma*_bbar-)

Xi_b0 

\(\Xi ^{0 }_{b}\) (Xi_b0)

Xi_bbar0 

\(\overline{\Xi }^{0 }_{b}\) (Xi_bbar0)

Xi_bcplus 

\(\Xi ^{+}_{bc}\) (Xi_bc+)

Xi_bcbarminus 

\(\overline{\Xi }^{-}_{bc}\) (Xi_bcbar-)

bs_0 

\(\mbox{bs}^{0 }\) (bs_0)

bs_0bar 

\(\overline{\mbox{bs}}^{0 }\) (bs_0bar)

bs_1 

\(\mbox{bs}_{1}\) (bs_1)

bs_1bar 

\(\overline{\mbox{bs}}_{1}\) (bs_1bar)

Xiprime_bminus 

\(\Xi ^{\prime -}_{b}\) (Xi'_b-)

Xiprime_bbarplus 

\(\overline{\Xi }^{\prime +}_{b}\) (Xi'_bbar+)

Xistar_bminus 

\(\Xi ^{*-}_{b}\) (Xi*_b-)

Xistar_bbarplus 

\(\overline{\Xi }^{*+}_{b}\) (Xi*_bbar+)

Xiprime_b0 

\(\Xi ^{\prime 0 }_{b}\) (Xi'_b0)

Xiprime_bbar0 

\(\overline{\Xi }^{\prime 0 }_{b}\) (Xi'_bbar0)

Xistar_b0 

\(\Xi ^{*0 }_{b}\) (Xi*_b0)

Xistar_bbar0 

\(\overline{\Xi }^{*0 }_{b}\) (Xi*_bbar0)

Omega_bminus 

\(\Omega ^{-}_{b}\) (Omega_b-)

Omega_bbarplus 

\(\overline{\Omega }^{+}_{b}\) (Omega_bbar+)

Omegastar_bminus 

\(\Omega ^{*-}_{b}\) (Omega*_b-)

Omegastar_bbarplus 

\(\overline{\Omega }^{*+}_{b}\) (Omega*_bbar+)

Omega_bc0 

\(\Omega ^{0 }_{bc}\) (Omega_bc0)

Omega_bcbar0 

\(\overline{\Omega }^{0 }_{bc}\) (Omega_bcbar0)

bc_0 

\(\mbox{bc}^{0 }\) (bc_0)

bc_0bar 

\(\overline{\mbox{bc}}^{0 }\) (bc_0bar)

bc_1 

\(\mbox{bc}_{1}\) (bc_1)

bc_1bar 

\(\overline{\mbox{bc}}_{1}\) (bc_1bar)

Xiprime_bc0 

\(\Xi ^{\prime 0 }_{bc}\) (Xi'_bc0)

Xiprime_bcbar0 

\(\overline{\Xi }^{\prime 0 }_{bc}\) (Xi'_bcbar0)

Xistar_bc0 

\(\Xi ^{*0 }_{bc}\) (Xi*_bc0)

Xistar_bcbar0 

\(\overline{\Xi }^{*0 }_{bc}\) (Xi*_bcbar0)

Xiprime_bcplus 

\(\Xi ^{\prime +}_{bc}\) (Xi'_bc+)

Xiprime_bcbarminus 

\(\overline{\Xi }^{\prime -}_{bc}\) (Xi'_bcbar-)

Xistar_bcplus 

\(\Xi ^{*+}_{bc}\) (Xi*_bc+)

Xistar_bcbarminus 

\(\overline{\Xi }^{*-}_{bc}\) (Xi*_bcbar-)

Omegaprime_bc0 

\(\Omega ^{\prime 0 }_{bc}\) (Omega'_bc0)

Omegaprime_bcba 

\(\overline{\Omega }^{\prime }_{bc}\) (Omega'_bcba)

Omegastar_bc0 

\(\Omega ^{*0 }_{bc}\) (Omega*_bc0)

Omegastar_bcbar0 

\(\overline{\Omega }^{*0 }_{bc}\) (Omega*_bcbar0)

Omega_bccplus 

\(\Omega ^{+}_{bcc}\) (Omega_bcc+)

Omega_bccbarminus 

\(\overline{\Omega }^{-}_{bcc}\) (Omega_bccbar-)

Omegastar_bccplus 

\(\Omega ^{*+}_{bcc}\) (Omega*_bcc+)

Omegastar_bccbarminus 

\(\overline{\Omega }^{*-}_{bcc}\) (Omega*_bccbar-)

bb_1 

\(\mbox{bb}_{1}\) (bb_1)

bb_1bar 

\(\overline{\mbox{bb}}_{1}\) (bb_1bar)

Xi_bbminus 

\(\Xi ^{-}_{bb}\) (Xi_bb-)

Xi_bbbarplus 

\(\overline{\Xi }^{+}_{bb}\) (Xi_bbbar+)

Xistar_bbminus 

\(\Xi ^{*-}_{bb}\) (Xi*_bb-)

Xistar_bbbarplus 

\(\overline{\Xi }^{*+}_{bb}\) (Xi*_bbbar+)

Xi_bb0 

\(\Xi ^{0 }_{bb}\) (Xi_bb0)

Xi_bbbar0 

\(\overline{\Xi }^{0 }_{bb}\) (Xi_bbbar0)

Xistar_bb0 

\(\Xi ^{*0 }_{bb}\) (Xi*_bb0)

Xistar_bbbar0 

\(\overline{\Xi }^{*0 }_{bb}\) (Xi*_bbbar0)

Omega_bbminus 

\(\Omega ^{-}_{bb}\) (Omega_bb-)

Omega_bbbarplus 

\(\overline{\Omega }^{+}_{bb}\) (Omega_bbbar+)

Omegastar_bbminus 

\(\Omega ^{*-}_{bb}\) (Omega*_bb-)

Omegastar_bbbarplus 

\(\overline{\Omega }^{*+}_{bb}\) (Omega*_bbbar+)

Omega_bbc0 

\(\Omega ^{0 }_{bbc}\) (Omega_bbc0)

Omega_bbcbar0 

\(\overline{\Omega }^{0 }_{bbc}\) (Omega_bbcbar0)

Omegastar_bbc0 

\(\Omega ^{*0 }_{bbc}\) (Omega*_bbc0)

Omegastar_bbcbar0 

\(\overline{\Omega }^{*0 }_{bbc}\) (Omega*_bbcbar0)

Omegastar_bbbminus 

\(\Omega ^{*-}_{bbb}\) (Omega*_bbb-)

Omegastar_bbbbarplus 

\(\overline{\Omega }^{*+}_{bbb}\) (Omega*_bbbbar+)

a_00 

\(\mbox{a}^{0 }\) (a_00)

b_10 

\(\mbox{b}^{0 }_{1}\) (b_10)

a_0plus 

\(\mbox{a}^{0 +}\) (a_0+)

a_0minus 

\(\mbox{a}^{0 -}\) (a_0-)

b_1plus 

\(\mbox{b}^{+}_{1}\) (b_1+)

b_1minus 

\(\mbox{b}^{-}_{1}\) (b_1-)

f_0 

\(\mbox{f}^{0 }\) (f_0)

h_1 

\(\mbox{h}_{1}\) (h_1)

Kstar_00 

\(\mbox{K}^{*0 }\) (K*_00)

Kstar_0bar0 

\(\overline{\mbox{K}}^{*0 }\) (K*_0bar0)

K_10 

\(\mbox{K}^{0 }_{1}\) (K_10)

K_1bar0 

\(\overline{\mbox{K}}^{0 }_{1}\) (K_1bar0)

Kstar_0plus 

\(\mbox{K}^{*0 +}\) (K*_0+)

Kstar_0minus 

\(\mbox{K}^{*0 -}\) (K*_0-)

K_1plus 

\(\mbox{K}^{+}_{1}\) (K_1+)

K_1minus 

\(\mbox{K}^{-}_{1}\) (K_1-)

eta1440 

\(\eta ^{0 }_{144}\) (eta1440)

hprime_1 

\(\mbox{h}^{\prime }_{1}\) (h'_1)

Dstar_0plus 

\(\mbox{D}^{*0 +}\) (D*_0+)

Dstar_0minus 

\(\mbox{D}^{*0 -}\) (D*_0-)

D_1plus 

\(\mbox{D}^{+}_{1}\) (D_1+)

D_1minus 

\(\mbox{D}^{-}_{1}\) (D_1-)

Dstar_00 

\(\mbox{D}^{*0 }\) (D*_00)

Dstar_0bar0 

\(\overline{\mbox{D}}^{*0 }\) (D*_0bar0)

D_10 

\(\mbox{D}^{0 }_{1}\) (D_10)

D_1bar0 

\(\overline{\mbox{D}}^{0 }_{1}\) (D_1bar0)

Dstar_0splus 

\(\mbox{D}^{*+}_{0s}\) (D*_0s+)

Dstar_0sminus 

\(\mbox{D}^{*-}_{0s}\) (D*_0s-)

D_1splus 

\(\mbox{D}^{+}_{1s}\) (D_1s+)

D_1sminus 

\(\mbox{D}^{-}_{1s}\) (D_1s-)

chi_0c 

\(\chi _{0c}\) (chi_0c)

h_1c 

\(\mbox{h}_{1c}\) (h_1c)

Bstar_00 

\(\mbox{B}^{*0 }\) (B*_00)

Bstar_0bar0 

\(\overline{\mbox{B}}^{*0 }\) (B*_0bar0)

B_10 

\(\mbox{B}^{0 }_{1}\) (B_10)

B_1bar0 

\(\overline{\mbox{B}}^{0 }_{1}\) (B_1bar0)

Bstar_0plus 

\(\mbox{B}^{*0 +}\) (B*_0+)

Bstar_0minus 

\(\mbox{B}^{*0 -}\) (B*_0-)

B_1plus 

\(\mbox{B}^{+}_{1}\) (B_1+)

B_1minus 

\(\mbox{B}^{-}_{1}\) (B_1-)

Bstar_0s0 

\(\mbox{B}^{*0 }_{0s}\) (B*_0s0)

Bstar_0sbar0 

\(\overline{\mbox{B}}^{*0 }_{0s}\) (B*_0sbar0)

B_1s0 

\(\mbox{B}^{0 }_{1s}\) (B_1s0)

B_1sbar0 

\(\overline{\mbox{B}}^{0 }_{1s}\) (B_1sbar0)

Bstar_0cplus 

\(\mbox{B}^{*+}_{0c}\) (B*_0c+)

Bstar_0cminus 

\(\mbox{B}^{*-}_{0c}\) (B*_0c-)

B_1cplus 

\(\mbox{B}^{+}_{1c}\) (B_1c+)

B_1cminus 

\(\mbox{B}^{-}_{1c}\) (B_1c-)

chi_0b 

\(\chi _{0b}\) (chi_0b)

h_1b 

\(\mbox{h}_{1b}\) (h_1b)

a_10 

\(\mbox{a}^{0 }_{1}\) (a_10)

a_1plus 

\(\mbox{a}^{+}_{1}\) (a_1+)

a_1minus 

\(\mbox{a}^{-}_{1}\) (a_1-)

f_1 

\(\mbox{f}_{1}\) (f_1)

Kstar_10 

\(\mbox{K}^{*0 }_{1}\) (K*_10)

Kstar_1bar0 

\(\overline{\mbox{K}}^{*0 }_{1}\) (K*_1bar0)

Kstar_1plus 

\(\mbox{K}^{*+}_{1}\) (K*_1+)

Kstar_1minus 

\(\mbox{K}^{*-}_{1}\) (K*_1-)

fprime_1 

\(\mbox{f}^{\prime }_{1}\) (f'_1)

Dstar_1plus 

\(\mbox{D}^{*+}_{1}\) (D*_1+)

Dstar_1minus 

\(\mbox{D}^{*-}_{1}\) (D*_1-)

Dstar_10 

\(\mbox{D}^{*0 }_{1}\) (D*_10)

Dstar_1bar0 

\(\overline{\mbox{D}}^{*0 }_{1}\) (D*_1bar0)

Dstar_1splus 

\(\mbox{D}^{*+}_{1s}\) (D*_1s+)

Dstar_1sminus 

\(\mbox{D}^{*-}_{1s}\) (D*_1s-)

chi_1c 

\(\chi _{1c}\) (chi_1c)

Bstar_10 

\(\mbox{B}^{*0 }_{1}\) (B*_10)

Bstar_1bar0 

\(\overline{\mbox{B}}^{*0 }_{1}\) (B*_1bar0)

Bstar_1plus 

\(\mbox{B}^{*+}_{1}\) (B*_1+)

Bstar_1minus 

\(\mbox{B}^{*-}_{1}\) (B*_1-)

Bstar_1s0 

\(\mbox{B}^{*0 }_{1s}\) (B*_1s0)

Bstar_1sbar0 

\(\overline{\mbox{B}}^{*0 }_{1s}\) (B*_1sbar0)

Bstar_1cplus 

\(\mbox{B}^{*+}_{1c}\) (B*_1c+)

Bstar_1cminus 

\(\mbox{B}^{*-}_{1c}\) (B*_1c-)

chi_1b 

\(\chi _{1b}\) (chi_1b)

psiprime 

\(\psi ^{\prime }\) (psi')

Upsilonprime 

\(\Upsilon ^{\prime }\) (Upsilon')

SUSY_d_L 

\(\tilde{\mbox{d}}_{L}\) (~d_L)

SUSY_d_Lbar 

\(\tilde{\overline{\mbox{d}}}_{L}\) (~d_Lbar)

SUSY_u_L 

\(\tilde{\mbox{u}}_{L}\) (~u_L)

SUSY_u_Lbar 

\(\tilde{\overline{\mbox{u}}}_{L}\) (~u_Lbar)

SUSY_s_L 

\(\tilde{\mbox{s}}_{L}\) (~s_L)

SUSY_s_Lbar 

\(\tilde{\overline{\mbox{s}}}_{L}\) (~s_Lbar)

SUSY_c_L 

\(\tilde{\mbox{c}}_{L}\) (~c_L)

SUSY_c_Lbar 

\(\tilde{\overline{\mbox{c}}}_{L}\) (~c_Lbar)

SUSY_b_1 

\(\tilde{\mbox{b}}_{1}\) (~b_1)

SUSY_b_1bar 

\(\tilde{\overline{\mbox{b}}}_{1}\) (~b_1bar)

SUSY_t_1 

\(\tilde{\mbox{t}}_{1}\) (~t_1)

SUSY_t_1bar 

\(\tilde{\overline{\mbox{t}}}_{1}\) (~t_1bar)

SUSY_e_Lminus 

\(\tilde{\mbox{e}}^{-}_{L}\) (~e_L-)

SUSY_e_Lplus 

\(\tilde{\mbox{e}}^{+}_{L}\) (~e_L+)

SUSY_nu_eL 

\(\tilde{\nu }_{eL}\) (~nu_eL)

SUSY_nu_eLbar 

\(\tilde{\overline{\nu }}_{eL}\) (~nu_eLbar)

SUSY_mu_Lminus 

\(\tilde{\mu }^{-}_{L}\) (~mu_L-)

SUSY_mu_Lplus 

\(\tilde{\mu }^{+}_{L}\) (~mu_L+)

SUSY_nu_muL 

\(\tilde{\nu }_{\mu L}\) (~nu_muL)

SUSY_nu_muLbar 

\(\tilde{\overline{\nu }}_{\mu L}\) (~nu_muLbar)

SUSY_tau_1minus 

\(\tilde{\tau }^{-}_{1}\) (~tau_1-)

SUSY_tau_1plus 

\(\tilde{\tau }^{+}_{1}\) (~tau_1+)

SUSY_nu_tauL 

\(\tilde{\nu }_{\tau L}\) (~nu_tauL)

SUSY_nu_tauLbar 

\(\tilde{\overline{\nu }}_{\tau L}\) (~nu_tauLbar)

SUSY_g 

\(\tilde{\mbox{g}}\) (~g)

SUSY_chi_10 

\(\tilde{\chi }^{0 }_{1}\) (~chi_10)

SUSY_chi_20 

\(\tilde{\chi }^{0 }_{2}\) (~chi_20)

SUSY_chi_1plus 

\(\tilde{\chi }^{+}_{1}\) (~chi_1+)

SUSY_chi_1minus 

\(\tilde{\chi }^{-}_{1}\) (~chi_1-)

SUSY_chi_30 

\(\tilde{\chi }^{0 }_{3}\) (~chi_30)

SUSY_chi_40 

\(\tilde{\chi }^{0 }_{4}\) (~chi_40)

SUSY_chi_2plus 

\(\tilde{\chi }^{+}_{2}\) (~chi_2+)

SUSY_chi_2minus 

\(\tilde{\chi }^{-}_{2}\) (~chi_2-)

SUSY_Gravitino 

\(\tilde{{\cal G}}\) (~Gravitino)

SUSY_d_R 

\(\tilde{\mbox{d}}_{R}\) (~d_R)

SUSY_d_Rbar 

\(\tilde{\overline{\mbox{d}}}_{R}\) (~d_Rbar)

SUSY_u_R 

\(\tilde{\mbox{u}}_{R}\) (~u_R)

SUSY_u_Rbar 

\(\tilde{\overline{\mbox{u}}}_{R}\) (~u_Rbar)

SUSY_s_R 

\(\tilde{\mbox{s}}_{R}\) (~s_R)

SUSY_s_Rbar 

\(\tilde{\overline{\mbox{s}}}_{R}\) (~s_Rbar)

SUSY_c_R 

\(\tilde{\mbox{c}}_{R}\) (~c_R)

SUSY_c_Rbar 

\(\tilde{\overline{\mbox{c}}}_{R}\) (~c_Rbar)

SUSY_b_2 

\(\tilde{\mbox{b}}_{2}\) (~b_2)

SUSY_b_2bar 

\(\tilde{\overline{\mbox{b}}}_{2}\) (~b_2bar)

SUSY_t_2 

\(\tilde{\mbox{t}}_{2}\) (~t_2)

SUSY_t_2bar 

\(\tilde{\overline{\mbox{t}}}_{2}\) (~t_2bar)

SUSY_e_Rminus 

\(\tilde{\mbox{e}}^{-}_{R}\) (~e_R-)

SUSY_e_Rplus 

\(\tilde{\mbox{e}}^{+}_{R}\) (~e_R+)

SUSY_nu_eR 

\(\tilde{\nu }_{eR}\) (~nu_eR)

SUSY_nu_eRbar 

\(\tilde{\overline{\nu }}_{eR}\) (~nu_eRbar)

SUSY_mu_Rminus 

\(\tilde{\mu }^{-}_{R}\) (~mu_R-)

SUSY_mu_Rplus 

\(\tilde{\mu }^{+}_{R}\) (~mu_R+)

SUSY_nu_muR 

\(\tilde{\nu }_{\mu R}\) (~nu_muR)

SUSY_nu_muRbar 

\(\tilde{\overline{\nu }}_{\mu R}\) (~nu_muRbar)

SUSY_tau_2minus 

\(\tilde{\tau }^{-}_{2}\) (~tau_2-)

SUSY_tau_2plus 

\(\tilde{\tau }^{+}_{2}\) (~tau_2+)

SUSY_nu_tauR 

\(\tilde{\nu }_{\tau R}\) (~nu_tauR)

SUSY_nu_tauRbar 

\(\tilde{\overline{\nu }}_{\tau R}\) (~nu_tauRbar)

pi_tc0 

\(\pi ^{0 }_{tc}\) (pi_tc0)

pi_tcplus 

\(\pi ^{+}_{tc}\) (pi_tc+)

pi_tcminus 

\(\pi ^{-}_{tc}\) (pi_tc-)

piprime_tc0 

\(\pi ^{\prime 0 }_{tc}\) (pi'_tc0)

eta_tc0 

\(\eta ^{0 }_{tc}\) (eta_tc0)

rho_tc0 

\(\rho ^{0 }_{tc}\) (rho_tc0)

rho_tcplus 

\(\rho ^{+}_{tc}\) (rho_tc+)

rho_tcminus 

\(\rho ^{-}_{tc}\) (rho_tc-)

omega_tc 

\(\omega _{tc}\) (omega_tc)

V8_tc 

\(\mbox{V}_{8tc}\) (V8_tc)

pi_22_1_tc 

\(\pi _{22}\) (pi_22_1_tc)

pi_22_8_tc 

\(\pi _{22}\) (pi_22_8_tc)

rho_11_tc 

\(\rho _{11}\) (rho_11_tc)

rho_12_tc 

\(\rho _{12}\) (rho_12_tc)

rho_21_tc 

\(\rho _{21}\) (rho_21_tc)

rho_22_tc 

\(\rho _{22}\) (rho_22_tc)

dstar 

\(\mbox{d}^{*}\) (d*)

dstarbar 

\(\overline{\mbox{d}}^{*}\) (d*bar)

ustar 

\(\mbox{u}^{*}\) (u*)

ustarbar 

\(\overline{\mbox{u}}^{*}\) (u*bar)

estarminus 

\(\mbox{e}^{*-}\) (e*-)

estarbarplus 

\(\overline{\mbox{e}}^{*+}\) (e*bar+)

nustar_e0 

\(\nu ^{*0 }_{e}\) (nu*_e0)

nustar_ebar0 

\(\overline{\nu }^{*0 }_{e}\) (nu*_ebar0)

Gravitonstar 

\({\cal G}^{*}\) (Graviton*)

nu_Re 

\(\nu _{Re}\) (nu_Re)

nu_Rmu 

\(\nu _{R\mu }\) (nu_Rmu)

nu_Rtau 

\(\nu _{R\tau }\) (nu_Rtau)

Z_R0 

\(\mbox{Z}^{0 }_{R}\) (Z_R0)

W_Rplus 

\(\mbox{W}^{+}_{R}\) (W_R+)

W_Rminus 

\(\mbox{W}^{-}_{R}\) (W_R-)

H_Lplus2 

\(\mbox{H}^{++}_{L}\) (H_L++)

H_Lminus2 

\(\mbox{H}^{--}_{L}\) (H_L–)

H_Rplus2 

\(\mbox{H}^{++}_{R}\) (H_R++)

H_Rminus2 

\(\mbox{H}^{--}_{R}\) (H_R–)

rho_diff0 

\(\rho ^{0 }_{\mbox{\scriptsize diffr}}\) (rho_diff0)

pi_diffrplus 

\(\pi ^{+}_{\mbox{\scriptsize diffr}}\) (pi_diffr+)

pi_diffrminus 

\(\pi ^{-}_{\mbox{\scriptsize diffr}}\) (pi_diffr-)

omega_di 

\(\omega _{\mbox{\scriptsize diffr}}\) (omega_di)

phi_diff 

\(\phi _{\mbox{\scriptsize diffr}}\) (phi_diff)

Jpsi_di 

\(J/\psi _{\mbox{\scriptsize diffr}}\) (J/psi_di)

n_diffr0 

\(\mbox{n}^{0 }_{\mbox{\scriptsize diffr}}\) (n_diffr0)

n_diffrbar0 

\(\overline{\mbox{n}}^{0 }_{\mbox{\scriptsize diffr}}\) (n_diffrbar0)

p_diffrplus 

\(\mbox{p}^{+}_{\mbox{\scriptsize diffr}}\) (p_diffr+)

p_diffrbarminus 

\(\overline{\mbox{p}}^{-}_{\mbox{\scriptsize diffr}}\) (p_diffrbar-)

undefined 

Undefined particle.

Definition at line 23 of file EnumParticles.h.